• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 111
  • 78
  • 8
  • 4
  • 4
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 268
  • 98
  • 75
  • 69
  • 62
  • 43
  • 42
  • 40
  • 39
  • 38
  • 34
  • 32
  • 29
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

The effectiveness of using volunteers for biological monitoring of streams

Engel, Sarah Rose 31 January 2001 (has links)
An increase in public environmental awareness and a decrease in resources within government regulatory agencies have led to a larger interest in volunteer biomonitoring programs. Government agencies are currently using volunteer data for official purposes with increasing frequency, but questions have been raised about the validity of the data collected by volunteers who have only limited training and experience. Therefore, we conducted a detailed study to assess, modify, and validate the Virginia Save-Our-Streams (SOS) program, which is a volunteer organization collecting macroinvertebrate data. Sites were sampled using professional methods concurrently with volunteers who utilized the SOS protocol. The volunteer samples were retained for further laboratory analysis. In addition, numerous sites previously sampled by volunteers were re-sampled using professional methods. The data were statistically analyzed to determine if the results of volunteers and professional aquatic biologists were correlated and if they arrived at the same conclusions about ecological condition. It was determined that the Virginia SOS method, and probably other similar volunteer methods, consistently overrate ecological condition. This means that streams impaired by pollution could go unreported, if they are monitored exclusively by volunteers. The cause of this overestimation was determined to be the overly simplistic SOS metric, which is based solely on the presence or absence of taxa. The SOS protocol for data analysis was made more quantitative by developing a multimetric index that is appropriate for use by volunteers. The SOS sampling protocol was modified slightly to obtain actual counts of the different kinds of macroinvertebrates, which allowed for calculation of metrics. Sorting effort and taxonomic level of identification were not changed so that currently participating volunteers would not be excluded because of the need for expensive equipment or advanced technical training. The modified SOS protocol was evaluated by a different set of concurrent samples taken by volunteers and professionals, but using the same statistical techniques. The modified SOS protocol proved to be feasible for volunteers. The new SOS multimetric index correlated well with a professional multimetric index. The conclusions about ecological condition derived from the volunteer multimetric index agreed very closely with those made by professional aquatic biologists. This study demonstrated that volunteer biomonitoring programs can provide reliable data, but every volunteer program needs to be thoroughly validated by statistical comparisons to the professional methods being used in that area. / Master of Science
142

Stream functional response to mountaintop removal and valley fill coal mining

Maxwell, Corrie 10 June 2009 (has links)
Mountaintop removal and valley fill (MTRVF) mining has become a widespread means of coal extraction in the central Appalachians. During MTRVF several hundred meters of overburden are removed to access coal seams, and excess rubble is dumped into adjoining valleys and streams. Filling valleys eliminates stream headwaters and may result in loss of stream ecosystem functions, which are dependent on temporal and lateral connectivity in river networks. To determine the affect of MTRVF on stream ecosystem function, leaf breakdown, which is an ecosystem level attribute of forested streams, was measured in five streams draining MTRVF sites and five reference streams in central West Virginia. Leaf packs of white oak and red maple were installed in these streams in December 2007, leaves were collected in January, February, March, April, and June of 2008, and leaves were washed and processed in the lab. Leaf breakdown rates were significantly slower in filled streams. MTRVF streams were marked by high sediment levels, elevated base flow, elevated conductivity and pH, and a lower density and richness of shredding macroinvertebrates than reference sites, suggesting that slower leaf decay was the result of the combined set of altered conditions in MTRVF streams. Additionally, MTRVF streams showed no species-level difference between red maple and white oak breakdown rates, indicating that MTRVF inhibits control of ecosystem function exerted by leaf species characteristics. / Master of Science
143

Macroinvertebrate Community Response to Spatial Patterns of Water Quality and Habitat within Mining-influenced Headwater Streams of Appalachia

McMillan, Melanie 07 June 2023 (has links)
Benthic macroinvertebrates are heavily relied on to indicate stream condition because of their ease of sampling, broad span of sensitivities to pollution among taxa, and diverse life histories that utilize various habitats and environmental conditions. Surface-coal mining in central Appalachia often results in salinization of headwater streams, with documented responses in macroinvertebrate communities across streams that vary in specific conductance (SC), an index of degree of salinization. Mining-influenced headwater streams can also exhibit within-stream spatial variation in SC, frequently via dilution with downstream distance from mining. However, the extent to which coal-mining alters downstream patterns in water chemistry and macroinvertebrate communities is largely unknown. This study aimed to determine macroinvertebrate community responses to physical and chemical gradients within six Appalachian headwater streams (four mining-impacted, two reference). Streams were sampled for benthic macroinvertebrates, habitat characteristics, and water chemistry in fall 2021 and spring 2022 at six-to-nine locations per stream over a range of 1.5 – 3 km. Mining-impacted streams exhibited greater spatial variation in macroinvertebrate community composition compared to reference streams, particularly in spring. Bray-Curtis Community similarity determined highly-impacted streams experienced the greatest within-stream shifts in community similarity. Metrics of macroinvertebrate communities and community similarity showed some correlation with SC at within-stream scales, particularly in highly impacted streams in spring; however, such trends were much fewer and weaker compared to relationships among streams when collectively examining communities. Redundancy Analysis (RDA) and Variation Partitioning (VP) indicated water quality, habitat, and location do overlap in explanation of community variation although they often additionally explain variance in unique ways. Significant variables identified by RDA within at least two of the six streams include channel slope, streamwater nutrients and hardness, stream channel embeddedness, and percent fines comprising the streambed. Redundancy Analysis also indicated 18 key macroinvertebrate taxa in study streams responding to location within stream, habitat, and water quality. Of those 18 taxa shredders, collectors, and clingers were most frequently impacted. Improved understanding of the spatial scale of coal-mining influences on headwater stream characteristics will help inform bioassessment protocols to most accurately assess stream condition, and inform remediation efforts within the central Appalachian region and in other salinized stream systems. / Master of Science / Small streams (or headwater streams) originating in the central Appalachian Mountains harbor a variety of unique organisms and are essential to the quantity and quality of downstream freshwater for fishing, recreation, and other uses. Coal mining processes, including disturbance of coal-bearing bedrock, often increases the streams salinity by adding pollutants that elevate dissolved minerals, or salts. Salinization of streams can come from a variety of sources in addition to coal mining such as de-icing road salts and crop irrigation and is of growing concern regarding its impacts to the quality of freshwater available for wildlife and human use. A common way to determine stream health is by identifying which aquatic insects (or macroinvertebrates) are present in a stream, because different groups are present based on the type and intensity of a variety of pollutants. Previous studies determined stream health by identifying insects from one location in a stream and comparing it to others. Stream's habitat and water quality naturally change as they join with larger rivers and flow to lower elevations causing different macroinvertebrates to be present at locations within streams. This study aimed to determine how changes along stream distances may be different in streams salinized from coal mining. The objectives of this study were to determine if one sample is adequate to represent the entire condition of a headwater stream. Six streams were sampled for macroinvertebrate, water quality, and habitat at six-to-nine locations within each stream over distances of ca. 2,000 m. Four streams were impacted by mining, of which two were highly impacted and two were impacted to a low-level; the last two streams were unimpacted to represent reference condition. The study found the type and number of macroinvertebrates within streams were changing least within reference streams and most in highly impacted streams. Macroinvertebrate communities in highly-impacted streams changed more within streams because they had high concentrations of dissolved salts upstream near the source of coal-mining pollution and these salts diluted with distance downstream, most likely due to fresh spring water contributions with minimal dissolved salts. Therefore, highly-impacted headwater streams experience greater environmental and macroinvertebrate variability indicating more than one sample location may be helpful in accurately assessing what macroinvertebrates inhabit the stream length of interest. Ensuring accurate sampling technique to determine stream condition is essential to our understanding of stream health and how to remediate and monitor impacts of salinization on our freshwater resources.
144

Effects of Cattle Disturbance on Aquatic Macroinvertebrates in Missouri Farm Ponds

Mittelhauser, Jennifer 07 1900 (has links)
I surveyed macroinvertebrate assemblages in ponds in three grazing regimes (ungrazed, rotationally grazed, and continuously grazed) in spring and summer of 2019 on the Osage Plains ecoregion of Missouri. Total suspended solids, turbidity, and organophosphates were lower in ungrazed ponds than in both grazed treatments, and water transparency and aquatic macrophyte cover was significantly higher. Richness was positively correlated with average depth, deepest depth, and water transparency and negatively correlated with turbidity and organophosphate levels. Overall, ungrazed ponds supported higher taxa richness and diversity across all taxa, as well as higher Diptera: Chironomidae, Odonata, and Trichoptera richness. Ungrazed ponds contained 29 unique genera and three unique families compared to two unique genera and two families in rotationally grazed ponds, and one 6 unique genera and one family in continuously grazed units. PerMANOVA results confirmed differences in habitat variables between ungrazed treatments and both grazed treatments; PCA analysis indicated that decreased taxa abundances were mostly associated with nitrate, bank slope, temperature, and pH and, while transparency and vegetation (emergent and cattails) were associated with increased abundances. PerMANOVA results confirmed seasonal differences in ungrazed ponds and continuously grazed treatments for total taxa and families. Chironomid communities differed between treatments and between seasons for ungrazed ponds and both grazing treatments. Fish presence reduced abundance of total taxa across seasons and in spring and Chironomidae taxa across seasons.
145

Selective predators in complex communities – mechanisms and consequences of benthic fish predation in small temperate streams

Worischka, Susanne 19 June 2015 (has links) (PDF)
The prey consumption by benthivorous fish predators can have profound top-down effects in stream food webs. To analyse this effects in small temperate stream ecosystems, a long-term field experiment was conducted in two streams in South-eastern Germany, Gauernitzbach and Tännichtgrundbach, from 2004 to 2011. The densities of two small-bodied benthivorous fish species, gudgeon (Gobio gobio) and stone loach (Barbatula barbatula), were manipulated following a Before-After-Control-Impact design. The top predator regime affected the benthic community composition of the streams mainly in pools, whereas the total benthic invertebrate biomass was not affected in any mesohabitat. The present work describes a causal analysis of the observed food web effects using additional field analyses and laboratory experiments, with a special focus on the habitat use and foraging behaviour of the fish as top predators. The probably most important of the analysed mechanisms was mesohabitat-specific predation by the fish. Three 24-h field video surveys combined with benthic invertebrate sampling showed that constraints in habitat use, especially for gudgeon, induced a differential predator-prey habitat overlap which resulted in a higher predation risk for the invertebrate prey in pools than in riffles. Another important mechanism was selective predation of both fish species. Their prey selectivity was largely explained by a small number of prey variables being connected to the partly non-visual foraging mode of these benthic predators. Besides the traits body size and feeding type, long-term mean abundance played a central role, small and highly abundant invertebrates, grazers and sediment feeders being preferred by gudgeon and stone loach. The preference for small and abundant prey taxa (chironomids) exceeded purely opportunistic feeding and probably facilitated resource partitioning between the two fish species having very similar diets. In addition to active selectivity, different predator avoidance strategies of the invertebrates analysed in laboratory experiments explained the passive selectivity of the fish predators for certain prey taxa in the streams. This could be shown for two abundant taxa being consumed by the fish predators in very different quantities, Gammarus pulex and Hydropsyche instabilis. These three mechanisms, although probably interacting with several other factors, could explain a large part of the effects the top-down food web manipulation had on the benthic community, especially the observed high degree of mesohabitat and species specificity. Confirming this, quantitative characteristics of predation food webs, for instance the importance of intraguild predation, differed markedly between pool and riffle mesohabitats. From the results of this study it can be concluded that the benthivorous fish affected benthic community structure mainly by mesohabitat-specific and selective predation. A manipulation of this (native) top predator type therefore will probably have such rather subtle but not catastrophic consequences in ecosystems with a high biotic diversity and a rich natural habitat structure and connectivity.
146

Spatiotemporal response of aquatic native and nonnative taxa to wildfire disturbance in a desert stream network

Whitney, James E. January 1900 (has links)
Doctor of Philosophy / Department of Biology / Keith B. Gido / Many native freshwater animals are imperiled as a result of habitat alteration, species introductions and climate-moderated changes in disturbance regimes. Native conservation and nonnative species management could benefit from greater understanding of critical factors promoting or inhibiting native and nonnative success in the absence of human-caused ecosystem change. The objectives of this dissertation were to (1) explain spatiotemporal patterns of native and nonnative success, (2) describe native and nonnative response to uncharacteristic wildfire disturbance, and (3) test the hypothesis that wildfire disturbance has differential effects on native and nonnative species. This research was conducted across six sites in three reaches (tributary, canyon, and valley) of the unfragmented and largely-unmodified upper Gila River Basin of southwestern New Mexico. Secondary production was measured to quantify success of native and nonnative fishes prior to wildfires during 2008-2011. Native fish production was greater than nonnatives across a range of environmental conditions, although nonnative fish, tadpole, and crayfish production could approach or exceed that of native macroinvertebrates and fishes in canyon habitats, a warmwater tributary, or in valley sites, respectively. The second objective was accomplished by measuring biomass changes of a warmwater native and nonnative community during 2010-2013 before and after consecutive, uncharacteristic wildfires. Several native insect and fish taxa decreased after both wildfires, whereas nonnative decreases were most pronounced for salmonids and more limited for other taxa. Finally, effects of uncharacteristic wildfires followed by extreme flooding on metapopulations of native and nonnative fishes were contrasted during 2008-2013. Wildfire and flood disturbances increased extinction probabilities of all native fishes while leaving many nonnative fishes unaffected. These findings revealed a swinging pendulum of native and nonnative success, wherein wildfire disturbance resulted in a pendulum swing in favor of nonnatives. Ensuring the pendulum swings back in favor of natives will be facilitated by management activities that decrease wildfire size and intensity and maintain inherent ecosystem resilience.
147

Evaluation of the ecological impacts of beaver reintroduction on aquatic systems

Law, Alan January 2014 (has links)
The extent and quality of freshwater systems is declining globally. Combined with past drainage, straightening and flow regulation, current systems are often functional but not pristine. Conservation, creation and restoration of freshwater systems is common but requires significant planning, resources and active monitoring and may only be a short-term solution to the long-term problem of destruction and loss of riparian zones. Beavers (Castor spp.) have the ability to create physical and biological habitat heterogeneity through the construction of woody debris dams, thereby restoring lost natural discontinuities in freshwater systems. Beavers may thus offer a natural, more passive solution to the need for wetland restoration or creation and the problem of homogenisation of watercourses. As such, numerous beaver reintroductions and introductions have been undertaken based in part on restoring this lost natural heritage. However, it is crucial to be able to predict the potential effects on existing biota of physical modifications by beavers to ecosystems, especially in the light of further population expansion, whilst also disentangling these effects from other influences, namely herbivory. The impact of beavers on aquatic systems was studied using a combination of field-based surveys and experiments, using aquatic plants and macro-invertebrates as indicators of hydromorphological changes and to quantify the effects of direct foraging. The research presented in this thesis demonstrates beaver adaptive foraging behaviours between terrestrial and aquatic habitats, whilst feeding highly selectively, optimally and opportunistically, using the white water lily (Nymphaea alba) as a model species. The effects of beaver foraging on the aquatic plant resource and diversity was low over short time spans (e.g. 1 year), but when selective foraging was assessed over greater time scales (e.g. 10 years) the effects of foraging were distinct. Significant changes in aquatic plant height, biomass, richness, diversity and composition were observed over this time period due to selective grazing on large rhizomatous species (e.g. Menyanthes trifoliata). These direct effects occurred even though changes in water levels, which are commonly believed to be the main driver of beaver influence on aquatic vegetation, were negligible. In a separate study in Sweden where beavers commonly constructed dams, with ponds then forming upstream, the aquatic plant and coleoptera species richness and composition differed in comparison to adjacent non-beaver created wetlands. Therefore, having a range of wetland types in the environment increases physical and biological heterogeneity creating unique niches that are exploited by disparate taxa. The construction of a series of dams within a single reach of stream flowing through a Scottish agricultural landscape also increased physical habitat diversity. Distinctive macroinvertebrate assemblages and modified functional diversity were associated with each dominant habitat type in the stream, resulting in increased landscape scale richness. The findings of this thesis confirm that beaver engineering and foraging has the potential to create unique and highly heterogeneous wetland and stream habitats within landscapes that enhances richness and diversity for multiple species groups. This thesis also supports part of the rationale for the trial reintroduction of beaver to Scotland that beavers can restore degraded habitats.
148

Predictable Changes in Abundance, Composition, and Size Structure of Fish and Macroinvertebrates Along an Urbanization Gradient in the Ottawa-Gatineau Area

Duhaime, Johannie 24 September 2012 (has links)
As land use transformations are the main driver of biological diversity loss at the global scale, it is essential to provide predictions and understanding of their impacts in order to improve the mitigation of ecosystem perturbations. The first objective of this project was to describe the response of biological assemblages along a gradient of urbanization and to compare metrics of watershed imperviousness in order to determine, as has been suggested in the literature, whether effective imperviousness, which represents the proportion of impervious area directly connected to the stream by storm sewers, is a better predictor of stream impairement than total imperviousness in the watershed. Decline in sensitive taxa abundance is initiated at 14% total imperviousness and 3% effective imperviousness in the Ottawa-Carleton region and, total and effective imperviousness have equivalent predictive power. The second objective of this project was to describe how the structure of metazoan assemblages in urban streams, as described by size spectra attributes (i.e. slopes, intercepts, number of logarithmic size classes occupied, and residual variance), varies with watershed size, land use and water quality. Streams size spectra of the Ottawa-Gatineau region have relatively shallow slopes, reflecting relatively higher densities of organisms in the larger size classes compared to other ecosystem types (e.g. lakes, oceans, soils, coastal waters). Size spectra slopes, density corrected for size, number of size classes, and residual variance vary predictably along gradients of watershed size, watershed proportion of natural land use and periphyton chlorophyll a. A systematic trend of declining spectra slopes with increasing periphyton biomass suggests that ecological efficiency declines in urban eutrophic streams.
149

The hyporheic zone as a refugium for benthic invertebrates in groundwater-dominated streams

Stubbington, Rachel January 2011 (has links)
A principal ecological role proposed for the hyporheic zone is as a refugium that promotes benthic invertebrate survival during adverse conditions in the surface stream. Whilst a growing body of work has examined use of this hyporheic refugium during hydrological extremes (spates, streambed drying), little research has considered variation in refugium use over prolonged periods including contrasting conditions of surface flow. In this thesis, benthic invertebrate use of the hyporheic refugium is considered at monthly intervals over a five-month period of variable surface flow, at nine sites in two groundwater-dominated streams, the River Lathkill (Derbyshire) and the River Glen (Lincolnshire). Conditions identified as potential triggers of refugium use included a flow recession and a high-magnitude spate on the Lathkill, and small spates and a decline in flow preceding localised streambed drying on the Glen. During flow recession, reductions in submerged habitat availability and concurrent increases in benthic population densities were dependent on channel morphology. An unusual paired benthic-hyporheic sampling strategy allowed the type of refugium use (active migration, passive inhabitation) to be inferred from changes in hyporheic abundance and the hyporheic proportion of the total population. Using this approach, evidence of active migrations into the hyporheic zone use was restricted to two instances: firstly, Gammarus pulex (Amphipoda: Crustacea) migrated in response to habitat contraction and increased benthic population densities; secondly, migrations of Simuliidae (Diptera) were associated with low-magnitude spates. Refugium use was site-specific, with refugial potential being highest at sites with downwelling water and coarse sediments. A conceptual model describing this spatial variability in the refugial capacity of the hyporheic zone is developed for low flow conditions. In some cases, hyporheic refugium use was apparently prevented by disturbance-related factors (rapid onset, high magnitude) regardless of the refugial potential of the sediments. The extension of the hyporheic zone's refugial role to include low flows highlights the need to explicitly protect the integrity of hydrologic exchange in river rehabilitation schemes. However, the limited capacity of the hyporheic refugium emphasizes the additional importance of maintaining habitat heterogeneity including multiple instream refugia.
150

Biomasses et compositions relatives des communautés de macroinvertébrés associées à différents types d'habitats au lac Saint-Pierre (Québec, Canada)

Tourville Poirier, Anne-Marie January 2009 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Page generated in 0.0772 seconds