• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 4
  • 4
  • Tagged with
  • 34
  • 34
  • 15
  • 9
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

EFFECTS OF POLYMER COMPOSITIONS AND SCAFFOLD SURFACE FUNCTIONALIZATION ON WOUND HEALING

Tseng, Yen-Ming 03 August 2022 (has links)
No description available.
22

ROLE OF THE IRE/XBP-1 PATHWAY IN CIGARETTE SMOKE AFFECTED MACROPHAGE POLARIZATION IN VITRO

Mahmood, Sohail Hassan January 2017 (has links)
Cigarette smoke contributes to 90% of lung cancer cases and 80% of COPD cases. These concerns loom large as lung cancer represents 13% of all cancer deaths and estimates report by 2020 COPD will be the third leading cause of death in the world. The master regulator of the ER stress response, IRE-1, in the context of cigarette smoke exposure lacks study. Interestingly, its downstream pathways are activated. In fact, the 2014 Surgeon General’s report on the health consequences of smoking highlighted the endoplasmic reticulum (ER) stress response as a potential mechanism leading to the development of lung cancer and Chronic Obstructive Pulmonary Disorder (COPD). Following acute cigarette smoke exposure, mouse lung homogenates exhibited increased levels of XBP-1 along with downstream mediators of IRE-1 activation— GRP-78 and CHOP. Specifically observing macrophages, an important immune cell and source of acute inflammation, cigarette smoke induced activation of IRE-1/XBP-1 pathway through splicing of XBP-1 mRNA. However, upon assaying for pro-inflammatory cytokines we were unable to determine that cigarette smoke directly caused inflammation in vitro. Furthermore, cigarette smoke inhibited the activation of M2 macrophages, an anti-inflammatory and tissue healing subset seen through CCL18 inhibition. A majority of M2 and M1 macrophage markers were decreased from IRE-1/XBP-1 inhibition. This suggests a different phenotype than classical M1 or M2 polarization being induced by cigarette smoke. In addition, it suggests the IRE-1/XBP-1 pathway having a robust role in controlling gene expression and balance of cellular proteomics. / Thesis / Master of Science (MSc) / Cigarette smoke exposure damages the lungs and over time places the user at risk for increased infections, progressive decreases in lung function and cancer. A specific cell of the immune system and found in the lungs, macrophages or “Big Eater” cells, responds first by picking up debris and responding to harmful foreign substances by releasing proteins signaling the immune system to become activated. Within all animal cells, an organelle called the Endoplasmic Reticulum (ER) manufactures a third of proteins produced allowing the cell to adapt to foreign substances, including cigarette smoke. Cigarette smoke could cause the ER, a plastic organelle, to change in size and function at a heightened level due to activation of a sensing protein integrated in the ER, Inositol Requiring Enzyme-1 (IRE-1). Both activation of the ER and cigarette smoke causes macrophages to behave as “tissue-healing” or M2 subsets that release factors promoting reconstruction of the lungs; alternatively, M1 macrophages fight diseases and promote further inflammation. Using genetic analysis of macrophages exposed to cigarette smoke in culture dishes and analyzing the proteins secreted, we determined cigarette smoke inhibits M1 macrophages and the “tissue-healing” subset, while increasing adhesion molecule expression. Overall, cigarette smoke affected the polarization of M1 and M2 phenotype, analyzed through proteins and genes expression. We observed an increase in sXBP-1, indicative of IRE-1/XBP-1 pathway activation, from cigarette smoke extract exposure in macrophages. However, the use of IRE-1 inhibitors increased ER stress markers while affecting M1 and M2 markers. This suggests ER compensation from the use of inhibiting one arm of the ER stress response.
23

Galectin-1 Improves Sarcolemma Repair and Decreases the Inflammatory Response in LGMD2B Models

Rathgeber, Matthew F. 08 December 2020 (has links)
Limb-girdle muscular dystrophy type 2B (LGMD2B) is caused by mutations in the dysferlin gene, resulting in non-functional dysferlin, a key protein found in muscle membrane. Treatment options available for patients are chiefly palliative in nature and focus on maintaining ambulation. Our hypothesis is that galectin-1 (Gal-1), a soluble carbohydrate binding protein, increases membrane repair capacity, myogenic potential, M2 macrophage polarization and decreases NF-κB inflammation in dysferlin-deficient models. To test this hypothesis, we used recombinant human galectin-1 (rHsGal-1) to treat dysferlin-deficient models. We show that rHsGal-1 treatments of 48 h-72 h promotes myogenic maturation as indicated through improvements in size, myotube alignment, and myoblast migration in dysferlin-deficient myotubes. Furthermore, rHsGal-1 showed an increased membrane repair capacity of dysferlin-deficient myotubes. Improvements in membrane repair after only a 10 min rHsGal-1treatment suggests mechanical stabilization of the membrane due to interaction with glycosylated membrane bound, ECM or yet to be identified ligands through the CDR domain of Gal-1. rHsGal-l significantly reduces canonical NF-κB inflammation through TAK 1, P65, P50. Lastly we find 2.7 mg/kg in vivo rHsGal-1 treatment in BLA/J mice supports an M2 cyto-regenerative macrophage populations. Together our novel results reveal Gal-1 remediates disease pathologies in LGMD2B through changes in integral myogenic protein expression, mechanical membrane stabilization, immune modulation, and reducing canonical NF-κB inflammation.
24

The Role of Placental Hofbauer Cells in Vertical Transmission of <i>Listeria monocytogenes</i>

Azari, Siavash January 2021 (has links)
No description available.
25

ROLE OF OXIDIZED EXTRACELLULAR VESICLES AS EARLY BIOMARKERS AND INFLAMMATORY MEDIATORS IN CHEMOTHERAPY-INDUCED NORMAL TISSUE INJURY

Yarana, Chontida 01 January 2018 (has links)
Significant advances in the efficacy of cancer therapy have been accompanied by an escalation of side effects that result from therapy-induced injury to normal tissues. Patients with high grade cancer or metastasis are often treated with chemotherapy, 50% of which are associated with reactive oxygen species generation and cellular oxidative stress. Heart is the normal tissue most susceptible to chemotherapy-induced oxidative stress and heart disease is the most common leading cause of death in cancer survivors. However, early and sensitive biomarkers to identify heart disease are still lacking. Extracellular vesicles (EVs) are released from cells during oxidative stress and send oxidized proteins into the circulation as a compensatory mechanism that prevents cellular proteotoxicity. Thus, the protein contents of EVs released during the pre-degeneration stage reveal that oxidative stress is occurring early in the damaged tissue. Using a mouse model of doxorubicin (DOX)-induced cardiac injury, we demonstrated that EVs can be used as an early diagnostic tool for tissue injury as they are oxidatively modified with 4-hydroxynonenal and contain tissue specific proteins—glycogen phosphorylase brain/heart, muscle, and liver isoforms—that indicate their origins. These biomarkers increased early, before the changes of conventional biomarkers occurred. EVs also mediate intercellular communication by transferring bioactive molecules between cells. In the cell culture system, EVs play an important role in oxidative stress response by inducing macrophage polarization. EVs from cardiomyocytes promoted both proinflammatory (M1) and anti-inflammatory (M2) macrophage polarization evidenced by higher pro- and anti-inflammatory cytokines and nitric oxide generation, as well as mitochondrial oxidative phosphorylation suppression and glycolysis enhancement. In contrast, EVs from the hepatocytes supported anti-inflammatory macrophage (M2) by enhancing oxidative phosphorylation and anti-oxidant proteins. DOX promoted the immunostimulatory effects of cardiomyocyte EVs but not hepatocyte EVs. The differential functions of EVs on macrophage phenotype switching are due to their different effects on Thioredoxin 1 redox state, which regulates activities of redox sensitive transcription factors NFκB and Nrf-2. Our findings shed light on the role of EVs as a redox active mediator of immune response during chemotherapy.
26

AZITHROMYCIN THERAPY REDUCES CARDIAC INFLAMMATION AND MITIGATES ADVERSE CARDIAC REMODELING AFTER MYOCARDIAL INFARCTION

Al-Darraji, Ahmed Hamish Neamah 01 January 2019 (has links)
Introduction: Myocardial infarction (MI) remains the leading cause of morbidity and mortality worldwide. Induced by cardiomyocyte death, MI initiates a prolonged and uncontrolled inflammatory response which impairs the healing process. Immune cells, such as macrophages, play a central role in organizing the early post-MI inflammatory response and the subsequent repair phase. Two activation states of macrophages have been identified with distinct and complementary functions (inflammatory vs. reparatory). This bimodal pattern of macrophage activation is an attractive therapeutic target to favorably resolve post-MI inflammation and enhance recovery. It has been demonstrated that azithromycin (AZM), a commonly used antibiotic with immunomodulatory effects, polarizes macrophages towards the reparatory phenotype. AZM has an excellent safety profile and has been approved for human use. We hypothesize that AZM reduces inflammation and improves heart function in MI. Methods and results: In our initial studies, we demonstrated that oral free AZM (160 mg/kg daily for 7 days), initiated 3 days prior to MI, enhances post-MI cardiac recovery as a result of shifting macrophages to the reparatory state. We observed a significant reduction in mortality with AZM therapy. AZM-treated mice showed a significant decrease in pro-inflammatory and an increase in reparative macrophages, decreasing the pro-inflammatory/reparative macrophage ratio. Macrophage changes were associated with a significant decline in pro- and an increase in anti-inflammatory cytokines. Additionally, AZM treatment was correlated with a distinct decrease in neutrophil count due to apoptosis, a known signal for shifting macrophages towards the reparative phenotype. Finally, AZM treatment improved cardiac recovery, scar size, and angiogenesis. We designed this proof of concept study using pre-MI AZM therapy to achieve steady state levels prior to injury. Therefore, in our follow-up studies we targeted inflammatory macrophages using a non-Pegylated liposomal formulation of AZM (Lazm) which has been shown in multiple studies to promote drug efficacy and minimize off-target effects. To test the hypothesis that Lazm is more effective and safer than free AZM, low doses of free/liposomal AZM (10 or 40 mg/kg, administered intravenously) were initiated immediately after MI. We observed that Lazm induces early resolution of the post-MI inflammatory response as evidenced by switching of the activation state of monocytes/macrophages towards the reparatory phenotype. Neutrophils were substantially decreased, particularly pro-inflammatory neutrophils. Cytokine profiles were also shifted to the anti-inflammatory status with Lazm therapy. Taken together, AZM treatment resulted in a significant shift in macrophage activation towards the reparatory state. The shift in inflammatory state was accompanied by a decrease in apoptosis and infarct size in the injured heart, as well as enhanced angiogenesis and LV functional recovery in our long-term studies. In addition, Lazm was protective against off-target effects of AZM on the heart. Conclusion: This is the first evidence of a novel and clinically-relevant therapeutic strategy to modulate post-MI inflammation. We found that AZM reduces cardiac inflammation and improves adverse cardiac remodeling after infarction via promoting a shift of macrophage activation state. The overarching significance of this work is the modulation of sterile inflammation, which can be a viable therapeutic target in many conditions including stroke and heart attack. Additionally, this is the first study to demonstrate the immune modulation properties of liposomal AZM, which has wide potential therapeutic applications beyond the cardiovascular field. Importantly, liposomal formulation of AZM is protective from its cardiac off-target effects. Our findings strongly support clinical trials using AZM as a novel and clinically relevant therapeutic target to improve cardiac recovery and reduce heart failure post-MI in humans.
27

ROLE OF TUMOR NECROSIS FACTOR-STIMULATED GENE-6 IN CUTANEOUS WOUND HEALING AND INFLAMMATION

Shakya, Sajina 10 December 2019 (has links)
No description available.
28

Fonctions nucléaires du récepteur de CSF-1 dans les monocytes humains / CSF-1 receptor nuclear functions in human monocytes

Bencheikh, Laura 22 November 2017 (has links)
CSF-1R (colony-stimulating factor 1 receptor) est un récepteur transmembranaire à activité tyrosine kinase exprimé à la surface des monocytes, des macrophages et de leurs progéniteurs. Son ligand, CSF-1, oriente les cellules souches hématopoïétiques vers le lignage myéloïde et permet la différenciation des monocytes en macrophages. Une localisation nucléaire de CSF-1R a été décrite dans certaines lignées tumorales, dans des tumeurs mammaires primitives et dans les macrophages murins. Dans le noyau de ces cellules, CSF-1R régulerait la phosphorylation de protéines nucléaires et l'expression de gènes de la prolifération. Nous avons identifié une localisation nucléaire de CSF-1R dans les monocytes primaires humains par différentes approches et différents anticorps. La forme nucléaire de CSF-1R correspond à la protéine entière monomérique qui est transportée depuis la membrane plasmique vers le noyau, de manière rétrograde, après activation par son ligand et avec celui-ci. L'utilisation d'inhibiteurs de l'activité kinase de CSF-1R diminue la quantité de récepteur dans le noyau. En revanche le blocage des mécanismes d'export nucléaire dépendant de CRM1 par la leptomycine B conduit à l'accumulation de la protéine dans ce compartiment. Dans les monocytes, CSF-1R est localisé sur la chromatine, dans les régions intergéniques et introniques et colocalise avec la marque H3K4me1 présente au niveau des enhancers activés. CSF-1R est situé à proximité de gènes régulant la morphogénèse, le développement du système nerveux, l'ossification et la différenciation cellulaire. Le récepteur est présent sur le promoteur du gène PU.1, facteur de transcription clé dans la différenciation myéloïde et la génération des monocytes, ainsi que sur des gènes impliqués dans la différenciation, la polarisation, la survie et les fonctions des macrophages. Au niveau de la chromatine, CSF-1R interagit avec des facteurs de transcription comme EGR1 sur lequel il exerce un effet co-répresseur. Cette localisation nucléaire de CSF-1R est conservée lorsque les monocytes se différencient en macrophages en réponse à CSF-1. CSF-1R nucléaire est alors relocalisé vers les régions promotrices et exoniques où il colocalise avec la marque H3K4me3. Il est présent à proximité de gènes régulant la vascularisation, la phagocytose, le métabolisme, la réponse au stress et à l'hypoxie. Il interagit avec les facteurs de transcription ELK1 et YY1, et joue un rôle de co-activateur. Lorsque les monocytes sont différenciés en macrophages par une autre cytokine, le GM-CSF, CSF-1R reste dans le noyau des cellules mais sa localisation sur la chromatine et ses interacteurs diffèrent de ceux des monocytes et des macrophages générés par CSF-1, démontrant un régulation différentielle de CSF-1R nucléaire selon le stade de différenciation et les signaux environnementaux. Dans des monocytes de patients atteints de leucémie myélomonocytaire chronique, l’expression, la localisation sur l’ADN et les interacteurs de CSF-1R sont modifiés, indiquant une dérégulation des fonctions nucléaires du récepteur en condition pathologique. CSF-1R est donc localisé dans le noyau des monocytes et des macrophages où il exerce un rôle de régulation de l'expression des gènes dont PU.1. Des résultats préliminaires suggèrent une localisation nucléaire du récepteur dans certaines populations de progéniteurs myéloïdes où il pourrait participer à la regulation de la différenciation. De nombreux inhibiteurs de CSF-1R sont en développement afin de cibler les macrophages infiltrant les tumeurs. Nos résultats démontrent que certains inhibiteurs ont la capacité de cibler la forme membranaire et la forme nucléaire du récepteur et donc d'inhiber l'ensemble des activités de CSF-1R dans les cellules, renforçant l'activité potentielle de ces traitements. / CSF-1R (colony-stimulating factor 1 receptor) is a transmembrane receptor with a tyrosine kinase activity. It is expressed at the cell surface of monocytes, macrophages and their progenitors. Its ligand, CSF-1, has an instructive role on hematopoietic stem cells to direct their differentiation into the myeloid lineage. CSF-1R is also able to differentiate monocytes into macrophages. A nuclear location was described for CSF-1R in cancer cell lines, primary breast tumors and murine macrophages. In the cell nucleus, CSF-1R was suggested to regulate nuclear protein phosphorylation and gene expression. We demonstrate that a small part of CSF-1R is in the nucleus of primary human monocytes, using different antibodies and technical approaches. Nuclear CSF-1R corresponds to full length monomeric receptor. After activation by its ligand, CSF-1R is translocated form cell surface to the nucleus through a retrograde transport, together with CSF-1. Kinase activity inhibitors impaired this process while inhibitors of CRM1-dependant nuclear export (leptomycin B) can revert this effect. In monocytes, CSF-1R is localized on chromatin, mainly on intergenic and intronic regions. It colocalizes with H3K4me1 mark which signs active enhancers. The receptor is present around genes involved in morphogenesis, nervous system development, ossification and cell differentiation. CSF-1R is also located on PU.1 promoter, which is a master transcription factor involved in myeloid and monocyte differentiation. CSF- 1R is also present on genes implicated in macrophage functions, differentiation, polarization and survival. At the chromatin level, CSF-1R interacts with different transcription factors like EGR1 and exerts a co-repressive role to decrease or limit gene expression. CSF-1R nuclear localization persists in macrophages generated by exposure of monocytes to CSF-1. It entails CSF-1R relocalization on promoter-TSS and exonic regions where it colocalizes with H3K4me3 mark. The receptor is close to genes regulating vascularization, phagocytosis, metabolism, stress and hypoxia responses. CSF-1R interacts with ELK1 and YY1 to promote macrophage functions. When monocytes are differentiated into macrophages with GM-CSF, CSF-1R also remains in the nucleus. However, its chromatin localization and interactions change compared to monocytes and CSF-1 differentiated macrophages. This indicates that nuclear CSF-1R is differentially regulated, depending on the cytokine that triggers cell differentiation. In monocytes from chronic myelomonocytic leukemia, CSF-1R expression, chromatin localization and interactors are modified, indicating a deregulated CSF-1R nuclear function under pathological state. Altogether, we showed that CSF-1R is localized in the nucleus of human monocytes and macrophages where it regulates gene expression including PU.1. Preliminary results suggest CSF-1R nuclear location in myeloid progenitor subsets where the receptor could directly regulate the expression of myeloid differentiation genes. Targeting CSF-1R is currently tested as a therapeutic strategy to impair tumor infiltrating macrophages. Our results show that CSF-1R inhibitors are able to target both membrane and nuclear forms and thus to inhibit all CSF-1R activities in the cells, enhancing the potential therapeutic effects of these molecules.
29

Rejet aigu en transplantation pulmonaire : intérêts de l’histologie et de l’ immunomarquage C4d dans le diagnostic de rejet aigu humoral et de l’évaluation de la polarisation des macrophages alvéolaires / Acute rejection in lung transplantation : the interests of histopathologic findings and C4d staining in the diagnosis of acute humoral rejection and evaluation of alveolar macrophage polarization

Holifanjaniaina, Sonia 16 June 2016 (has links)
La transplantation pulmonaire est depuis une vingtaine d’années une option thérapeutique valide pour une grande variété de pathologies pulmonaires au stade terminal. Malgré les progrès réalisés ces dernières années en matière de traitement immunosuppresseur, les rejets restent une cause majeure de la perte du greffon. Plusieurs études ont souligné l'importance du rejet aigu comme un facteur contributif important à l’évolution de la dysfonction chronique du greffon (ou CLAD) et, in fine, à la perte du greffon. Par conséquent, des outils diagnostiques fiables de rejet aigu s’imposent pour mieux prévenir le CLAD. Dans notre première étude, nous avons évalué les marqueurs tissulaires de rejet aigu humoral (RAH) pulmonaire. Nous avons montré ainsi que les lésions histologiques dont l’inflammation microvasculaire ne sont pas spécifiques et le marquage C4d est un marqueur utile pour confirmer le diagnostic de RAH. Dans un second temps, nous avons étudié en cytométrie de flux la polarisation des macrophages obtenus par lavage bronchiolo-alvéolaire (LBA) chez des patients transplantés avec et sans rejet. Nos résultats montrent les limites des marqueurs membranaires (HLA-DR et CD206) dans l’évaluation de l’état de polarisation des macrophages au cours des rejets. Ce travail montre l’intérêt des marqueurs tissulaires, en particulier le marquage C4d, dans le suivi des patients transplantés pulmonaires et souligne la nécessité d’identifier des marqueurs appropriés et utilisables en cytométrie de flux pour avancer sur l’état de polarisation des macrophages alvéolaires. / Lung transplantation is considered as a valid therapeutic option for patients with end-stage lung disease. Despite considerable progress in immunosuppressive therapy, allograft rejection remains a major cause of graft loss. Multiple studies have highlighted the importance of acute rejection as an important risk factor for the development of chronic lung allograft dysfunction (CLAD) leading to graft failure. Therefore, the improvement in the diagnosis of acute rejection represents a major challenge to prevent CLAD. In this study, we evaluated the tissue markers of acute antibody-mediated rejection (AMR) in lung transplantation. In our experience, the histopathologic findings including the microvascular inflammation in pulmonary AMR are not specific and C4d staining is a useful marker to confirm the diagnosis of AMR. Secondly, we investigated by flow cytometry the polarization of alveolar macrophage obtained by bronchoalveolar lavage (BAL) from lung transplant patients with and without acute rejection. Our results show the limits of surface markers (CD206 and HLA-DR) in the evaluation of alveolar macrophage polarization. This study shows the interest of tissue markers, especially the C4d staining, in monitoring of lung transplant patients and highlights the need to identify appropriate and available markers for future studies of alveolar macrophage polarization by flow cytometry.
30

Dissecting the Roles of Macrophage Subpopulations Responding to Peripheral Nerve Injury in Conditioning-Lesion Enhanced Regeneration in vivo

Talsma, Aaron David 27 January 2023 (has links)
No description available.

Page generated in 0.1056 seconds