Spelling suggestions: "subject:"cagnetic microrobots"" "subject:"cmagnetic microrobots""
1 |
Navigation prédictive d'un microrobot magnétique : Instrumentation, commande et validation / Predictive navigation of a magnetic microrobot : instrumentation, control ans validationBelharet, Karim 04 October 2013 (has links)
Un grand nombre de traitements sont aujourd'hui disponibles pour la cancérologie, dont l'objectif est d'éliminer tous les tissus cancéreux en minimisant les dommages occasionnés sur les tissus sains. La chimio-embolisation est considérée comme un régime de traitement localisé, préconisé pour certains cancers. Cependant, le ciblage des tumeurs profondément enfouies par chimio-embolisation est actuellement limité en raison de la taille des cathéters. Compte tenu des échelles envisagées, l'utilisation des microrobots magnétiquement guidés est l'une des approches les plus prometteuses. L'objectif de cette thèse consiste à développer les outils permettant à des microrobots endovasculaires (ou transporteurs magnétiques), de naviguer dans le corps humain, en utilisant les gradients magnétiques d'un appareil IRM clinique amélioré. Pour cela, une compréhension approfondie de l'environnement d'évolution du microrobot est une étape au préalable, en vue d'établir des stratégies de navigation adéquates. La variation des paramètres physiologiques de l'humain et l'utilisation d'un scanner IRM nécessitent d'une part, une robustesse du contrôleur vis-à-vis des erreurs de modélisation, et d'autre part, l'anticipation du comportement du système. A cet effet, la commande prédictive, trouve ici toute son efficacité pour résoudre les problèmes de poursuite. En outre, une plateforme d'instrumentation a été conçue au sein du laboratoire en vue de démontrer les concepts proposés, et de valider les stratégies de navigation prédictives développées dans nos travaux. Puis, dans un deuxième temps, nous avons intégré ces approches dans une plateforme d'IRM clinique. / Today, many cancer treatments are available, whose goal is to kill the cancerous tissue and to minimize damage to healthy tissue. Chemoemobilization is considered as a targeting treatment recommended for some cancers. However, targeting tumor deeply buried using chemoemobilization is currently limited due to the size of the microcatheters. Taking into account the scales considered, the use of magnetically guided microrobots is one of the most promoting approaches. The objective of this thesis is to develop tools for endovascular microrobots (or carriers), navigate in the human body using magnetic gradients of an improved clinical MRI. For this, understanding microrobot evolution environment is a first step, in order to develop appropriate navigation strategies. The variation of the human physiological parameters and the use of MRI scanner require a robustness of the controller to the modeling errors, and the anticipation of the system behavior. For this, predictive control is fully effective to solve the tracking problem. In addition, an instrumentation platform was designed to demonstrate the proposed concepts and to validate the predictive navigation strategies developed in our work. Then, in a second step, we investigated these approaches in clinical MRI platform.
|
2 |
Modélisation et commande de microrobots magnétiquement guidés dans le système cardiovasculaire / Modeling and control of a magnetically guided microrobot in cardiovascular systemArcese, Laurent 22 November 2011 (has links)
La chirurgie minimalement invasive est aujourd’hui une thématique de recherche particulièrement active. Un traitement thérapeutique ciblé et la possibilité d’établir un diagnostic précis grâce à l’utilisation de systèmes miniaturisés peuvent considérablement améliorer de nombreuses pratiques médicales. Le recours à des microrobots actionnés à distance et naviguant dans le système cardiovasculaire ouvre de nouvelles perspectives. L’objectif de cette thèse est de proposer un socle théorique solide concernant i) la modélisation d’un microrobot naviguant dans le système cardiovasculaire, ii) l’élaboration de lois de commande et d’observateurs assurant un bon suivi de trajectoire depuis la zone d’injection jusqu’à une zone cible. La modélisation du système fait intervenir de nombreuses forces : forces hydrodynamiques, forces surfaciques (électrostatique, van der Waals, stériques), forces de contact et poids apparent du microrobot. Ce microrobot est contrôlé dans le système cardiovasculaire par l’application de champs ou de gradients de champ magnétique selon le design du microrobot. La prise en compte de l’ensemble des forces aboutit à une représentation d’état sous la forme d’un système non-linéaire affine en la commande avec dérive comportant de nombreux paramètres physiologiques incertains. Une trajectoire de référence optimisée est déduite du modèle. L’approche de commande adoptée est établie à partir de critères de stabilité du système. Le système étant non-linéaire, une commande de type Lyapunov stabilisante est développée suivant une approche de type backstepping. L’estimation de certains paramètres physiologiques est rendue possible par une commande de type backstepping adaptatif. Un observateur grand gain reconstruit l’état complet du système nécessaire au calcul de la commande. La stabilité et la robustesse de l’ensemble sont établies au travers de nombreuses simulations en présence de bruits de mesure et d’erreurs paramétriques. / Minimally invasive medical procedures are currently an active research aera. A drug targeted therapy and the possibility of establishing an accurate diagnosis through the use of miniaturized systems can greatly improve many medical practices. The use of untethered microrobots navigating in the cardiovascular system opens new perspectives. The objective of this PhD work is to provide a theoretical approach on i) the modeling of a microrobot navigating in the cardiovascular system, ii) the development of control laws and observers to ensure a fine tracking from the injection to a target area. Modeling such as system involves many forces : hydrodynamic forces, surface forces (electrostatic, van derWaals, steric), contact forces and apparent weight of the microrobot. This microrobot is controlled in the cardiovascular system by the application of magnetic fields or magnetic field gradients according to the design of the microrobot. The consideration of all the forces leads to a state representation in the form of a nonlinear system with many physiological uncertain parameters, but gives us sufficient informations to plan an optimal trajectory. The control approach is established based on stability consideration. A Lyapunov-stabilizing control is then developed using a backstepping approach. An adaptive backstepping control law estimates some physiological parameters. A high gain observer reconstructs the full state of the system required for implementing the control approach. Robustness and stability of the controller with respect to noise measurement, parameters variations and uncertainties are illustrated by simulations.
|
3 |
Modélisation et commande de microrobots magnétiques pour le traitement ciblé du cancer / Modeling and control of magnetic microrobots for therapeutic targetingMellal, Lyès 07 December 2016 (has links)
Le cancer est une maladie caractérisée par la croissance incontrôlée des cellules. Le nombre de personnes atteintes par le carcinome hépatocellulaire (CHC) est en progression croissante. Les traitements utilisés jusqu'à présent par les médecins tels que la chimioembolisation transartérielle (TACE) et la radioembolisation transartérielle (TARE) présentent des limitations à cause des effets secondaires causés sur les tissus sains. En vue d'atteindre un meilleur contrôle tumoral avec le minimum de complications des tissus sains, les approches microrobotiques peuvent apporter des solutions au problème du ciblage thérapeutique. Une solution consiste à contrôler la direction de transporteurs thérapeutiques (bolus magnétiques), composés de microparticules magnétiques et d’agents anti-cancéreux, à l’intérieur des vaisseaux sanguins vers la zone tumorale. Des champs magnétiques extérieurs sont alors utilisés pour propulser, guider et naviguer une flottille de bolus magnétiques au travers du réseau artériel. Cette thèse propose donc une méthodologie globale à mettre en place afin de rendre les procédures locorégionales transartérielles robotisées plus ciblées et plus localisées. Dans un premier temps, nous avons optimisé la quantité de médicament à injecter sous forme de bolus magnétiques. Ensuite, nous nous sommes intéressés à l'optimisation de la structure du bolus en vue d’assurer d’une part, la navigation optimale à l’intérieur des vaisseaux et d’autre part, d’offrir la possibilité d’embarquer une quantité d’agents thérapeutiques plus importante. La navigation des bolus délivrés par un cathéter vers la zone ciblée (tumeur) est assurée grâce au développement et à l'implémentation d’une loi de commande optimale. La validation de l'injection et de la navigation des bolus magnétiques a été réalisée sur une plateforme magnétique robotisée développée dans le cadre de cette thèse. / Cancer is a disease characterized by an uncontrolled cell growth. The number of people with hepatocellular carcinoma (HCC) is growing constantly. The treatments used by doctors until nowadays such as transarterial chemoembolization (TACE) and transarterial Radioembolization (TARE) have limitations because of the side effects caused to healthy tissues. In order to achieve best tumor control with minimal complications on healthy tissues, microrobotics technology can provide solutions to the problem of therapeutic targeting. One solution is to control the direction of the therapeutic carriers (magnetic bolus), composed of magnetic microparticles and anti-cancer agents, inside the blood vessels to the tumor area (target). External magnetic fields are then used to propel, steer and navigate a magnetic bolus fleet through the arterial system. This thesis offers a global methodology to implement in order to make the robotic transarterial locoregional procedures more targeted and localized. First, we have optimized the amount of drug to be injected as magnetic boluses. Then, we have carried out the optimization of the magnetic bolus structure in order to ensure firstly, the optimal navigation inside the vessels and secondly, to offer the possibility of carrying a larger amount of therapeutic agents. The navigation of boluses delivered by the catheter to the target area (tumor) is ensured through the development and implementation of the optimal control law. The validation of the injection and navigation magnetic bolus are performed on a magnetic microrobotic platform.
|
4 |
Modélisation, observation et commande de robots vasculaires magnétiques / Modeling, observation and control of a vascular magnetic robotsSadelli, Lounis 25 November 2016 (has links)
La chirurgie minimalement invasive est un domaine de recherche très actif puisqu’elle permet d’envisagerdes thérapies ciblées et des diagnostics in situ tout en minimisant traumatismes, effets secondaires et tempsde convalescence. En particulier, l’utilisation de systèmes miniaturisés actionnés à distance ouvre la voie àune navigation dans le système cardiovasculaire, permettant ainsi le ciblage et l’intervention sur zones dif-ficilement accessibles du corps humain. L’objectif de cette thèse est de proposer i) un état de l’art sur lamodélisation des forces s’exerçant sur un ou plusieurs microrobots naviguant dans des vaisseaux sanguins,ii) des représentations d’état exploitables à des fins de commande et d’observation, iii) différentes synthèsesde lois de commande pour stabiliser un ou plusieurs microrobots le long d’une trajectoire de référence, iv)des observateurs d’état pour reconstruire les états non mesurables du système. Un microrobot magnétiquenaviguant dans un vaisseau sanguin subit la force de traînée, les forces surfaciques, de contact, d’interactionmagnétique, et son poids apparent. Son actionnement est assuré par l’application de champs ou de gradientsde champ magnétiques, et sa localisation est assurée par un imageur médical. La dynamique du ou desmicrorobots (système réduit) est sous forme d’état non linéaire affine en la commande avec dérive, et dé-pend de plusieurs paramètres physiologiques incertains, en particulier de la vitesse du sang, qui est difficileà mesurer. La dynamique du flux sanguin (système fluidique) est alors modélisée sous forme d’une repré-sentation d’état autonome, combinée avec le système réduit pour aboutir au système étendu. L’objectif decommande est de stabiliser les états du système réduit le long d’une trajectoire de référence. Une commandestabilisante est synthétisée par backstepping, mais elle n’est pas utilisable en l’état. Des observateurs baséssur le théorème de la valeur moyenne et sur une immersion sont synthétisés respectivement dans le cas oùla pulsation cardiaque est connue ou non. La stabilité du retour de sortie est alors démontrée. La stabilitéet la robustesse aux bruits de mesure, aux incertitudes paramétriques, et aux erreurs de modélisation desapproches proposées sont alors illustrées par des simulations. / Minimally invasive surgery is an active research area since such systems have the potential to perform complex surgical procedures such as targeted therapies or in situ diagnosis, while minimizing trauma, side effects and recovery time. Miniaturized systems magnetically propelled by remote actuation can achieve swimming through the blood vessels network in order to provide targeted therapy, even for hard-to-reach human organs. This PhD thesis aims at addressing i) a review on the modeling of microrobots immersed in blood vessels, ii) a classification of the state space forms of such systems, iii) the synthesis of state feedbacks ensuring the stabilization of the microrobots along a reference trajectory, iv) the synthesis of observers to rebuild the unmeasured state variables. Magnetic microrobots swimming in a blood vessel face the hydrodynamic drag, surfacic and contact forces, magnetic interactions, and their apparent weight. These untethered robots are actuated by magnetic fields or magnetic gradients generation, and their localization is ensured by a medical imager. The microrobots dynamics (the so-called reduced system) lead to a nonlinear affine control subsystem with drift, and exhibits many uncertain physiological parameters, such as the blood velocity which can hardly be measured. The blood flow dynamics (the so-called fluidic system) are then modeled as an autonomous subsystem. These two subsystems result in an extended system describing the whole (robot and fluid) dynamics. The control objective is to stabilize the state of the reduced system along a reference trajectory, which is performed by an adaptive backstepping synthesis. Yet the full state is not accessible. We then synthesize either MVT or immersion based observers for the extended system, when the blood pulsation is either known or not. The output feedback stability is then proved. The stability and robustness to output noise, parametric uncertainty, and modeling errors are then illustrated by simulations.
|
Page generated in 0.0635 seconds