• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Growth of the Magnetic Multilayer and Relative Properties

Ho, Yen-Hsun 22 August 2008 (has links)
From the discovery of GMR effect since 1988,spintronic has been extensively developed. Research and application of relative GMR, CMR and TMR topics have progressed rapidly. In the year of 2007, the Nobel prize of physics was awarded to Albert Fert and Peter Grünberg for the great achievement on the research of GMR. The application of development on MRAM is a very hot subject recently and the main operating constructions of MRAM are MTJ. In this thesis, La0.67Ca0.33MnO3¡BLa0.67Sr1.33MnO4 and La0.8Ba0.2MnO3 of CMR materials were growth to multilayer to investigate the properties and characters of the films, in order to built up the MRAM based on CMR MTJ¡¦s.
2

Berry phase related effects in ferromagnetic metal materials

Yang, Shengyuan 08 June 2011 (has links)
The concept of Berry phase, since its proposition in 1984, has found numerous applications and appears in almost every branch of physics today. In this work, we study several physical effects in ferromagnetic metal materials which are manifestations of the Berry phase. We first show that when a domain wall in a ferromagnetic nanowire is undergoing precessional motion, it pumps an electromotive force which follows a universal Josephson-type relation. We discover that the integral of the electromotive force over one pumping cycle is a quantized topological invariant equal to integer multiples of h/e, which does not depend on the domain wall geometry nor its detailed dynamic evolution. In particular, when a domain wall in a nanowire is driven by a constant magnetic field, we predict that the generated electromotive force is proportional to the applied field with a simple coefficient consisting of only fundamental constants. Our theoretical prediction has been successfully confirmed by experiments. Similar effect known as spin pumping occurs in magnetic multilayer heterostructures, where a precessing free magnetic layer pumps a spin current into its adjacent normal metal layers. Based on this effect, we propose two magnetic nanodevices that can be useful in future spintronics applications: the magnetic Josephson junction and the magneto-dynamic battery. The magnetic Josephson junction has a drastic increase in resistance when the applied current exceeds a critical value determined by the magnetic anisotropy. The magneto-dynamic battery acts as a conventional charge battery in a circuit with well-defined electromotive force and internal resistance. We investigate the condition under which the power output and efficiency of the battery can be optimized. Finally we study the side jump contribution in the anomalous Hall effect of a uniformly magnetized ferromagnetic metal. The side jump contribution, although arises from disorder scattering, was believed to be independent of both the scattering strength and the disorder density. Nevertheless, we find that it has a sensitive dependence on the spin structure of the disorder potential. We therefore propose a classification scheme of disorder scattering according to their spin structures. When two or more classes of disorders are present, the value of side jump is no longer fixed but depends on the relative disorder strength between classes. Due to this competition, the side jump contribution could flow from one class dominated limit to another class dominated limit when certain system control parameter changes. Our result indicates that the magnon scattering plays a role distinct from the normal impurity scattering and the phonon scattering in the anomalous Hall effect, because they belong to different scattering classes. / text
3

Tailored Properties of Ferromagnetic Thin Films

Warnicke, Peter January 2008 (has links)
Magnetic thin films and patterned nanostructures have been studied with respect to their magnetic properties using SQUID-magnetometry, magnetic force microscopy, electrical measurements, and micromagnetic calculations. Properties of vortex domain walls, trapped in Permalloy nanowires with artificial constrictions, were investigated experimentally and by numerical calculations. In particular, the geometrical extent and strength of the pinning potential were evaluated. In these wires, long-range vortex domain wall displacement induced by spin polarized alternating currents was obtained numerically at reduced threshold current densities as compared with the direct current case. Due to the asymmetry of the energy potential, the long-range displacement direction is determined by the vortex chirality. Strained FeCo/Pt superlattices with strong perpendicular anisotropy were investigated experimentally. The strain was controlled by varying the thickness of each alternating layer with monolayer precision and was found to have a dominating effect on the total anisotropy. Epitaxial films of the diluted magnetic semiconductor (Ga,Mn)As were studied with focus on how the ferromagnetic transition temperature could be controlled by post-growth annealing. The ferromagnetic transition temperature was enhanced by approximately 85% for a Mn-doping concentration of 6% under certain conditions. A method to manipulate micrometer sized magnetic particles on patterned arrays of elliptical Permalloy microstructures was studied. Controlled motion and separation of the magnetic particles were obtained using applied rotating magnetic fields. The domain structure of the elliptical elements was studied numerically.
4

自旋波在磁性奈米線中的微磁模擬 與 鈷/鉑,鈷/鈀,鉑/鈀多層膜的電、磁特性 / Micromagnetic simulations of spin waves in magnetic nanowires and electrical, magnetic properties of Co/Pt, Co/Pd, and Pt/Pd multilayers

謝智勛, Hsieh, Chih Hsun Unknown Date (has links)
本論文分為兩部分,第一部分探討使用OOMMF磁性材料模擬軟體來模擬奈米線波導中的自旋波特性,除了以往文獻所熱門的水平異向性薄膜合金中的自旋波,還模擬了垂直異向性的材料,我們模擬了在奈米線一端施加0 ~ 100 GHz外加磁場的自旋波響應。在模擬的結果中,我們發現了水平異向性與垂直異向性的重要差別,垂直異向性比水平異向性波導在頻率小於10 GHz時,少了複雜的自旋波傳遞。而在改變線寬的條件中,我們發現了垂直異向性波導在線寬夠大時,會因退磁場的效應,使得磁矩翻轉,形成許多磁壁,而水平異向性材料則不會,從水平異向性波導大於120 nm線寬的波型中,則會發現自旋波在波導中產生破碎的相位改變。而模擬具有水平寬度變化與垂直厚度變化的週期性邊界,則發現兩者所具有的濾波效果非常相似,而濾波的三個頻段,則是水平寬度變化所截止的頻段,寬於垂直厚度變化的頻段。 第二部分為 ,使用離子濺鍍製成總厚度200 nm,改變交錯層數的(Co/Pt)×N、(Co/Pd) ×N與(Pt/Pd) ×N,三種多層膜的磁性電性分析。Co/Pt與Co/Pd多層膜在Co厚度小於1 nm時為熱門垂直異向性材料,而本實驗專注於Co厚度大於1 nm時介面的特性以及兩種材料的差別。在磁阻的量測上面,得到不同於一般異向性磁阻的規律,一般的異向性磁阻的現象為,平行於電流施加磁場比垂直電流施加磁場所量測的電阻,前者電阻較大(ρ_(H∥I)>ρ_(H⊥I)),但是同為垂直於電流的平行於膜面磁場的電阻(ρ_(H⊥I,in-plane H))與垂直膜面磁場(ρ_(H⊥I,H perpendicular to plane))則呈現了不一樣的行為,尤其為垂直加場的部分,在某些條件的多層膜,會有明顯的垂直方向的異向性磁阻,是為介面所造成額外的垂直方向異向性磁阻,稱作”異向性介面磁阻”(Anisotropic Interface Magnetoresistance)。異向性磁阻與異性向介面磁阻都具有高電阻軸與垂直此軸的低電阻平面,而兩者差別在於異向性磁阻為電流方向軸,而異向性介面磁阻為膜面法向量軸,對於本實驗的量測方法來說,兩軸相差90度角,也因此可辨析兩者不同現象間的差異,並且在我們的分析之中發現,異向性介面磁阻在Co厚度為7 nm以下,才會明顯的顯現。 / The thesis is divided into two main parts. The first part discusses the properties of spin waves propagation in magnetic nanowire waveguide by micromagnetic simulation software OOMMF. In addition to in-plane magnetic anisotropy (IMA) in the thin film alloys, we simulate the perpendicular magnetic anisotropy (PMA) of the material. A transverse magnetic field is applied at one end of the waveguide wire and the frequency range is from 0 to 100 GHz. When frequency is less than 10 GHz, we observed that complex modes were generated in the IMA waveguide but there is no spin wave propagates in the PMA waveguide. We also studied the spin wave propagations in wires with different width. Irregular domain wall was generated by demagnetizing field in wider PMA waveguide but IMA waveguide does not have this behavior. In width-modulated and thickness-modulated waveguide spin wave simulations, these two filters have similar results with three band gaps from 0 to 100 GHz and the band gaps in width-modulated wire is wider than in thickness-modulated one. The second part is experimental measurements of the electrical and magnetic properties of (Co/Pt)×N, (Co/Pd) ×N, and (Pt/Pd) ×N multilayers, which are deposited by sputtering and the total thickness is 200nm. Co/Pt and Co/Pd were popular PMA materials when Co thickness is less than 1 nm. We focused on the multilayers with Co thicker than 1nm and the difference between these multilayers. In magnetoresistance measurement, the R-H curve is different from normal anisotropic magnetoresistance (AMR). AMR effect has different resistivity when H∥I or H⊥I, but the measurement results show that ρ_(H⊥I,in-plane H) and ρ_(H⊥I,H perpendicular to plane) also have different MR ratio in specific multilayer configuration. The effect is caused by the interface so it is anisotropic interface magnetoresistance (AIMR) as discussed in the literature. AMR and AIMR have both high resistivity axis and low resistivity plane which is perpendicular to the axis. The difference of two MRs is that the high resistivity axis is parallel to current in AMR and perpendicular to plane in AIMR. In the analysis, the AIMR effect is observed in multilayer with Co thickness less than 7 nm.

Page generated in 0.0782 seconds