Spelling suggestions: "subject:"cagnetic ordering"" "subject:"cmagnetic ordering""
1 |
Neutron scattering studies of spin waves and spinonsTennant, David Alan January 1994 (has links)
No description available.
|
2 |
Mössbauer spectroscopy on selectred magnetic compoundsKalska-Szostko, Beata January 2000 (has links)
<p>The applications of magnetic materials are related to their magnetic and crystal structure as well as electronic properties. In this thesis, mainly experimental methods have been focussed on novel materials and bulk materials. A selection of materials were studied by several techniques like Mössbauer spectroscopy, X-ray and neutron diffraction and magnetisation measurements.</p><p>New technology allow us to prepare artificial materials with unic magnetic properties. Magnetic multilayers are very interesting not only from phenomenological point of view but also as good applications materials. In this work will be shown some results from Fe/V and Fe/Co multilayer system</p><p>The (Fe<sub>1-x</sub>Mn<sub>x</sub>)<sub>3</sub>P system has been studied at both ends of the composition range. At the Fe-rich end, compounds exhibiting ferromagnetic ordering are formed, while at the Mn-rich end, an antiferromagnetic coupling was discovered. The experimental results are supported by theoretical calculations.</p><p>Rare-earth compounds with focus on Fe<sub>0.65</sub>Er<sub>0.2</sub>B<sub>0.15</sub> were studied by means of traditional Mössbauer spectroscopy, Monochromatic Circular Polarized Mössbauer Spectroscopy, X-ray diffraction and magnetic mesurements. This compound shows interesting behaviour of Fe magnetic moment at low and room temperature.</p><p>The first magnetic studies on rhombohedral Li<sub>3</sub>Fe<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> at low temperature has also been made and an antiferromagnetic structure was revealed.</p>
|
3 |
Mössbauer spectroscopy on selectred magnetic compoundsKalska-Szostko, Beata January 2000 (has links)
The applications of magnetic materials are related to their magnetic and crystal structure as well as electronic properties. In this thesis, mainly experimental methods have been focussed on novel materials and bulk materials. A selection of materials were studied by several techniques like Mössbauer spectroscopy, X-ray and neutron diffraction and magnetisation measurements. New technology allow us to prepare artificial materials with unic magnetic properties. Magnetic multilayers are very interesting not only from phenomenological point of view but also as good applications materials. In this work will be shown some results from Fe/V and Fe/Co multilayer system The (Fe1-xMnx)3P system has been studied at both ends of the composition range. At the Fe-rich end, compounds exhibiting ferromagnetic ordering are formed, while at the Mn-rich end, an antiferromagnetic coupling was discovered. The experimental results are supported by theoretical calculations. Rare-earth compounds with focus on Fe0.65Er0.2B0.15 were studied by means of traditional Mössbauer spectroscopy, Monochromatic Circular Polarized Mössbauer Spectroscopy, X-ray diffraction and magnetic mesurements. This compound shows interesting behaviour of Fe magnetic moment at low and room temperature. The first magnetic studies on rhombohedral Li3Fe2(PO4)3 at low temperature has also been made and an antiferromagnetic structure was revealed.
|
4 |
Magnetic and Thermal Properties of Molecular Magnet [FeII(£G)FeII(£N)(ox)2(Phen)2]nHo, Chin-jun 14 June 2007 (has links)
The molecular magnet [FeII(£G)FeII(£N)(ox)2(Phen)2]n, whose chemical formula is C28H16Fe2N4O8 for unity, has been studied by magnetization measurements, neutron diffraction, and field-dependent specific heat. From the magnetization measurements, the quasi-ferrimagnetic behavior at T>Tm region can be well described with alternating Landé factors within 1D Ising chain model. However, in T<Tm region, the construction of long-range magnetic ordering due to the increase of interchain interaction was investigated, which is consistent with the anomaly shown in the low temperature specific heat measurement. Furthermore, an intrinsic antiferromagnetic configuration is deduced from analyzing Bragg pattern of neutron scattering. In specific heat measurement, a £f-type anomaly indicating the long-range magnetic ordering was observed. In addition, the magnetic entropy due to this anomaly is much smaller than expected value indicating the spin fluctuated as short-range ordering at T>Tm.
|
5 |
Structure, Magnetic Ordering and Electrochemistry of Li1+xV1-xO2Gaudet, James Michael 03 February 2011 (has links)
The layered transition metal oxide composition series of Li1+xV1-xO2 was synthesized using the solid state synthesis technique. X-ray diffraction was used to determine the dependence of structure on composition and clearly indicated a structural anomaly at x = 0 caused by the unusual magnetic ordering on the triangular lattice of the V3+ layer. To prevent magnetic frustration V3+ cations undergo orbital ordering and subsequent periodic displacent to form “trimers”. The periodicity of this phenomena results in a superlattice structure that can be observed as a faint peak in XRD spectra. The relationship between composition, superlattice peak intensity and lattice parameters was clearly documented for the first time.
Li/Li1+xV1-xO2 cells were made and tested. Recent literature has shown that the transformation to 1T Li2VO2 upon lithiation is dependant on a nonzero x (ideally x = 0.07 for maximum capacity) to make a small number of tetrahedrally coordinated Li sites accessible. These sites then act as a trigger for shearing into the 1T phase. The cells described within this work intercalated significant amounts of lithium at a higher potential than the to 1T transition, possibly signifying occupation of a large number of the tetrahedral sites.
LiVO2 is known to undergo delithiation even in ambient conditons and this can lead to cationic disorder. Cationic disorder is an inhibitor of anion sheet shearing and this suggests that sample handling could be a cause of the observed electrochemical behaviour. The effects of air and water exposure were investigated.
|
6 |
Tlakem indukované změny v magnetickém chování sloučenin typu RCo2 / Pressure-induced changes of magnetic behavior of RCo2-type compoundsValenta, Jaroslav January 2013 (has links)
The diploma thesis is focused on the study of pressure-induced changes in a behavior of RECo2-type compounds. HoCo2 and its substitution of Si instead of Co in Ho(Co1-xSix)2, x = 0,025 were chosen as a representative compounds from this family of materials. Measurements of electric resistivity, heat capacity, magnetization and AC magnetic susceptibility under ambient pressure showed presence of three magnetic transitions for both samples: the change of the easy magnetization direction at TR ~ 16 K, the Curie temperature TC ~ 80 K and the flipping of magnetization of Co magnetic moments into the parallel direction with Ho magnetic moments at Tf ~ 125 K for HoCo2. Under hydrostatic pressures up to 3 GPa, the TR shifts to higher temperatures whereas TC and Tf, both decrease. This probably occurs due to the weakening of the Co magnetism and the strength of exchange interaction between Ho-Co sublattices. The experiment of muon spin rotation demonstrates a pressure influence to the decay of Co magnetic clusters, which occurs at lower temperatures with increasing pressure. It is evident that the hydrostatic pressure directly influences the exchange interaction between Co-Co.
|
7 |
Fyzikální jevy ve sloučeninách na bázi Ytterbia a Ceru / Physical phenomena in ytterbium- and cerium-based compoundsFikáček, Jan January 2014 (has links)
This work contains a study of CeRuSn, which undergoes two structural transitions at 290 K and 256 K both connected with large temperature hysteresis. During the transitions the lattice shrinks along the c axis. At low temperatures the compound orders antiferromagnetically below 2.8(1) K. A strong magnetocrystalline anisotropy is caused by very shortened Ce-Ru separations pointing approximately along the c axis. Due to a strong hybridization, two thirds of Cerium atoms are in a non integer valence state. For the first time synthesized single-crystals of YbPt2Si2 a Yb2Pt3Si5 show no magnetic ordering. A maximum, which is visible in the temperature dependences of magnetic susceptibility originate in thermal population of the magnetic Yb3+ state. Powered by TCPDF (www.tcpdf.org)
|
8 |
Magnetismus ve sloučeninách typu RCo2 / Magnetism in the RCo2-type compoundsŠebesta, Jakub January 2016 (has links)
Magnetic properties of RCo2 compounds have been studied since the sec- ond half of the last century. However, there was recently observed new mag- netic state, so-called parimagnetism. The aim of this thesis was to find the real behavior of TmCo2, which exhibits many discrepancies in the published results, by means of preparation of high-quality single-crystals, its characteri- zation around the ordering temperature and to study parimagnetic behavior. Obtained results showed differences between the samples, which should be caused by the instability of Co and Tm magnetism. It might be the reason of discrepancies in the literature. The results however show the same struc- ture of measured curves with two present phase transition. We suggest two possible interpretations: a) magnetic reorientation of Tm magnetic moments below the ordering temperature of the Tm sub-lattice or b) consequent or- dering of the rare-earth sub-lattice followed by ordering of the Co sub-lattice at lower temperature, which seems to be more realistic. We observed pari- magnetic anomalies at 38 K, 80 K, 168 K only in the case of single-crystals containing small amount of impurity phase, which probably affects the for- mation of magnetic clusters. 1
|
9 |
Magnetic Ordering in Bulk and Nanoparticles of Certain Bismuth Based Manganites Bi1-xAxMnO3 (A = Ca, Sr) : Electron Paramagnetic Resonance and Magnetization StudiesGeetanjali, * January 2013 (has links) (PDF)
The study of bulk and nanoparticles of perovskite rare earth manganites has been an extensive area of research in the recent past due to their rich and interesting physics and potential applications [1-5]. Manganites have potential applications in the emerging field of spintronics because of their colossal magnetoresistance (CMR) [6] and half-metallic [7] properties. Nano sized materials exhibit enhanced and different electronic and magnetic properties and expected to behave quite differently compared to their bulk counterparts due to quantum confinement effects and high surface/volume ratio. Magnetic nanoparticles in particular have great potential for use in a wide range of applications including magnetic recording media, various sensors, catalysts, magnetic refrigeration, medicine etc.
In this thesis we study changes in the magnetic ordering of certain bismuth based manganites Bi1-xAxMnO3 (A = Ca and Sr) using various experimental probes when we reduce their particle size to nano scale.
The general formula for doped manganites is R1-xAxMnO3 where R is a trivalent rare-earth ion such as La, Nd, Pr, Sm and A is a divalent alkaline earth ion such as Ca, Sr, Ba, Pb. They became interesting due to their many intriguing properties like CMR (Colossal Magnetoresistance), phase separation, charge ordering (CO), orbital ordering (OO) and many more. These properties depend sensitively on many factors like temperature, magnetic field, pressure and doping concentration x. There is a strong coupling of spin, orbital and lattice to each other in manganites. The complex interplay of all these couplings make them strongly correlated systems. In the parent compound RMnO3 Mn ion is in Mn3+ state while it is present as Mn4+ in the compound AMnO3. The manganites with x = 0 and x = 1 are both antiferromagnetic insulators, magnetism in them being mediated by superexchange through oxygen. On doping with a divalent alkaline earth ion in RMnO3, there is a transition
The properties of nanoparticles of manganites show strong surface effects. The magnetic behavior is strongly governed by the free surface spins in nanoparticles. And as the size reduces, there is suppression of charge ordering which can also disappear in very small particles [11]. Antiferromagnetism in bulk gives way to ferromagnetism in nanoparticles [12-14].
In the following we give a chapter wise summary of the results reported in the thesis.
Chapter 1: This chapter of the thesis consists of a brief introduction to the physics of manganites. Further we have written a detailed overview of bismuth based manganites, properties of nano manganites and the technique of EPR. There is a section about different line shapes observed in EPR of manganites, their origin and how to fit them to appropriate lineshape function [15]. This chapter also includes a detailed account of experimental methodologies used in thesis which are: EPR spectrometer, SQUID magnetometer, X-ray diffractometer and TEM and the analysis procedure adopted in this work.
Chapter 2: This chapter deals with the magnetic and EPR studies of nanoparticles (average diameter ~ 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and their comparison with the results on bulk BCMO. Bulk Bi0.25Ca0.75MnO3 (BCMOB) shows charge ordering at 230 K followed by a transition to an antiferromagnetic phase at 130 K [16]. The bulk and the nanoparticles (D ~ 30 nm) of Bi0.25Ca0.75MnO3 were prepared by solid-state reaction method and sol-gel method respectively. The two samples were investigated by using XRD, TEM, SQUID and EPR techniques. Our magnetization and EPR results show that the charge ordering disappears in nanoparticles of this composition and there emerges a ferromagnetic phase similarly to the rare earth manganites. The nanoparticles of the rare earth based manganites are found to consist of an antiferromagnetic core and a ferromagnetic shell/surface region [3, 17] and thus are expected to exhibit the ‘exchange bias (EB) effect’ [18-22] resulting in a shift of the magnetic hysteresis loop. Indeed many nanomanganites do show EB effect. However, contrary to this expectation, we find that in BCMON samples the EB effect is absent.
Chapter 3: In this chapter, we report the results of temperature dependent magnetization and electron paramagnetic resonance studies on bulk and nanoparticles of electron (x = 0. 6, BCE) and hole (x = 0.4, BCH) doped Bi1-xCaxMnO3 (BCMO) and the effect of the size reduction on the electron-hole asymmetry observed in the bulk sample. Bulk sample of Bi0.4Ca0.6MnO3is a paramagnetic insulator at room temperature with Tco = 330 K and TN ~ 120 K while BiCaMnO3 undergoes a charge ordering transition at TCO = 315 K with TN ~ 150 K [16]. All the four samples were investigated by using XRD, TEM, SQUID and EPR techniques. It is shown that antiferromagnetism and charge order persist in the hole doped nano sample while ferromagnetism has emerged in the electron doped nano sample. Our magnetization and EPR results show that spin glass phase exists in bulk BCE, bulk BCH and nano BCE whereas no sign of either spin glass state or ferromagnetism is seen in nano BCH. We have shown that electron-hole asymmetry in terms of ‘g’ parameter has reduced in the nanoparticles but it has not completely disappeared in contrast with the results on Pr1-xCaxMnO3 [23]. We understand these interesting results in terms of the presence of the highly polarizable 6s2 lone pair electrons on bismuth which is known to cause many interesting departures from the behavior of rare earth manganites. We study the temperature dependence of the linewidth behavior by fitting it to the different models [24¬27] and find that Shengelaya’s model [25, 26] fits well to all the four samples describing the spin dynamics satisfactorily in the present samples.
Chapter 4: In this chapter, we present the fabrication, characterization and the results obtained from the magnetization and EPR measurements carried out on bulk and nanoparticles of Bi0.1Ca0.9MnO3. We prepared the nanoparticles of BCMO by standard sol¬gel technique and bulk samples by solid state reaction method. We investigated magnetic ordering by doing temperature dependent magnetic and EPR studies on both the samples and compared the properties with each other. Bulk Bi0.1Ca0.9MnO3 (BCMB) shows mixed phase of antiferromagnetism and ferromagnetism without any charge ordered state. Our results show that the ferromagnetism exists in the bulk BCMO which is present in the nano sample as well but with somewhat weakened strength with the size reduction. The nanoparticles of the rare earth based manganites are found to consist of an antiferromagnetic core and a ferromagnetic shell/surface region and thus are expected to exhibit the more uncompensated spins on the surface which reduce the magnetization in the nanoparticles. We calculated activation energy for the two samples by fitting the intensity behavior to the Arrhenius equation [28]. Activation energy was found to decrease for nano BCMO which indicates the weaker intracluster double-exchange interaction in it.
Chapter 5: This chapter deals with the comparative study of the temperature dependent magnetic properties and EPR parameters of nano and bulk samples of Bi0.2Sr0.8MnO3 (BSMO). Nanoparticles and bulk sample of BSMO were prepared by sol-gel technique and solid state reaction method respectively. Bulk BSMO has high antiferromagnetic transition temperature TN ~ 260 K and robust charge ordering (TCO ~ 360 K) [29]. We confirm that the bulk sample shows an antiferromagnetic transition around ~ 260 K and a spin-glass transition ~ 40 K. For nano sample we see a clear ferromagnetic transition at around ~ 120 K. We conclude that mixed magnetic state exists in the bulk sample whereas it is suppressed in the nano sample and strong ferromagnetism is induced instead.
Chapter 6: This chapter summarizes the main conclusions of the thesis, also pointing out some future directions for research in the field.
|
10 |
Theoretical study of magnetic odering of defects in diamondBenecha, Evans Moseti 11 1900 (has links)
Magnetic ordering of dopants in diamond holds the prospect of exploiting diamond’s unique
properties in the emerging field of spintronics. Several transition metal defects have been
reported to order ferromagnetically in various semiconductors, however, low Curie
temperatures and lack of other fundamental material properties have hindered practical
implementation in room temperature spintronic applications. In this Thesis, we consider the
energetic stability of 3d transition metal doped-diamond and its magnetic ordering properties
at various lattice sites and charge states using ab initio Density Functional Theory methods.
We find the majority of 3d transition metal impurities in diamond at any charge state to be
energetically most stable at the divacancy site compared to substitutional or interstitial lattice
sites, with the interstitial site being highly unstable (by ~8 - 10 eV compared to the divacancy
site). At each lattice site and charge state, we find the formation energies of transition metals
in the middle of the 3d series (Cr, Mn, Fe, Co, Ni) to be considerably lower compared to
those early or late in the series. The energetic stability of transition metal impurities across
the 3d series is shown to be strongly dependent on the position of the Fermi level in the
diamond band gap, with the formation energies at any lattice site being lower in p-type or ntype
diamond compared to intrinsic diamond.
Further, we show that incorporation of isolated transition metal impurities into diamond
introduces spin polarised impurity bands into the diamond band gap, while maintaining its
semiconducting nature, with band gaps in both the spin-up and spin-down channels. These
impurity bands are shown to originate mainly from s, p-d hybridization between carbon sp
3
orbitals with the 3d orbitals of the transition metal. In addition, the 4p orbitals contribute
significantly to hybridization for transition metal atoms at the substitutional site, but not at
the divacancy site. In both cases, the spin polarisation and magnetic stabilization energies are
critically dependent on the lattice site and charge state of the transition metal impurity.
By allowing magnetic interactions between transition metal atoms, we find that ferromagnetic
ordering is likely to be achieved in divacancy Cr+2, Mn+2, Mn+1 and Co0 as well as in
substitutional Fe+2 and Fe+1, indicating that transition metal-doped diamond is likely to form
a diluted magnetic semiconductor which may successfully be considered for room
temperature spintronic applications. In addition, these charge states correspond to p-type
diamond, except for divacancy Co0, suggesting that co-doping with shallow acceptors such as
B (
will result in an increase of charge concentration, which is likely to
enhance mediation of ferromagnetic spin coupling. The highest magnetic stabilization energy
occurs in substitutional Fe+1 (33.3 meV), which, also exhibits half metallic ferromagnetic
ordering at the Fermi level, with an induced magnetic moment of 1.0 μB per ion, thus
suggesting that 100 % spin polarisation may be achieved in Fe-doped diamond. / Physics / D. Litt. et Phil. (Physics)
|
Page generated in 0.0896 seconds