• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnetization, Magnetotransport And Electron Magnetic Resonance Studies Of Certain Nanoscale Manganites

Rao, S Srinivasa 08 1900 (has links)
Perovskite rare-earth manganites of the form R1-xAxMnO3 (R – rare earth ion or Bi, A – Ca,Sr) have drawn an overwhelming research interest during the last few years owing to their extraordinary physical properties. Some of the interesting phenomena exhibited by the manganites are (a) colossal magneotresistance (CMR) (b) charge, orbital and spin ordering and (c) phase separation at nano and micron scale. The manganites are strongly correlated systems in which the charge, spin and orbital degrees of freedom are coupled. The properties of these materials are sensitive functions of external stimuli such as the doping, temperature and pressure [1-5] and have been extensively studied both experimentally and theoretically on single crystal, bulk polycrystalline and thin film forms of the samples [6-9]. Recently attention has been drawn towards the properties of nanoscale manganites. The nanoscale materials are expected to behave quite differently from extended solids due to quantum confinement effects and high surface/volume ratio. Nanoscale CMR manganites have been fabricated using diverse methods in the form of particles, wires, tubes and various other forms by different groups. It has been shown that the properties of CMR manganites can be tuned by reducing the particle size down to nanometer range and by changing the morphology [10-14]. The physical properties of antiferromagnetic insulating charge ordered manganites have been well investigated by using numerous experimental techniques on bulk solids. It is known that the charge ordered (CO) phase is ‘melted’ resulting in a ferromagnetic, metallic phase on application of high magnetic fields, electric fields, impurity ion doping, high energetic ion irradiation and by pressure [15-17]. However, no attempts have been made on the fabrication and the physical property investigations on nanoscale charge ordered manganites. Hence, we have undertaken to study the properties of charge ordered manganites prepared at nanoscale using various experimental probes. In this thesis we present the results on magnetization, magnetotransport and Electron Magnetic Resonance (EMR) (electron paramagnetic resonance in the paramagnetic phase and ferromagnetic resonance in the ferromagnetic phase) studies of the following nanoscale compounds and compare the properties with those of their bulk counterparts; (a) highly robust antiferromagnetic insulating CE –type charge ordered manganite Pr0.5Ca0.5MnO3 (PCMO) (b) highly robust antiferromagnetic insulating CE- type charge ordered manganite Nd0.5Ca0.5MnO3 (NCMO) (c) moderately robust A-type charge ordered manganite Pr0.5Sr0.5MnO3 (PSMO) (d) highly robust insulating anti-ferromagnetic charge ordered manganites Bi0.5Ca0.5MnO3 (BCMO) and Bi0.5Sr0.5MnO3 (BSMO) and (e) a CMR manganite Pr0.7Pb0.3MnO3 (PPMO). Chapter 1 of the thesis contains a brief introduction to the general features of manganites describing various interesting phenomena and the interactions underlying them. Further, we have written a detailed review on the properties of nanometric CMR manganites of various sizes and shapes. In this chapter, we have also described the experimental methodology and the analysis procedure adopted in this work Chapter 2 reports the fabrication of nanowires and nanoparticles of Pr0.5Ca0.5MnO3 (PCMO) and the results obtained from magnetization, magnetotransport and electron magnetic resonance measurements performed on nanoscale PCMO along with their comparison with those of the bulk sample. Here, the nanowires of PCMO were prepared by hydrothermal method and the nanoparticles of mean sizes 10, 20 and 40 nm were prepared by polymer assisted sol-gel method. Solid state reaction method was used to prepare the micron sized PCMO bulk material. Different techniques like XRD, TEM, EDAX and ICPAES have been used to characterize the samples. The novel result of the present investigation is the weakening of charge order and switch over from the anti-ferromagnetic phase to ferromagnetic phase in PCMO nanowires [18]. In addition, the charge order is seem to have completely suppressed in 10 nm PCMO nanoparticles as observed from the magnetization measurements. These results are particularly very significant as one needs magnetic fields of ~ 27 T to melt the charge ordered phase in PCMO. Size induced insulator-metal transition TM-I is observed in nanoscale PCMO at low temperatures accompanied by ferromagnetism. CMR of 99.7% is obtained at TM-I and at a field of 11 T. EMR studies have confirmed the presence of ferromagnetic phase at low temperatures. Temperature dependent EMR line width and intensity have shown the presence of CO phase in PCMO10 though static magnetization measurements have shown the absence of CO phase. It is found that the EMR linewidth increases with the decrease of particle size. Chapter 3 reports the fabrication of nanoparticles of Nd0.5Ca0.5MnO3 (NCMO) and the results obtained from magnetization, magnetotransport and electron magnetic resonance measurements performed on nanoscale NCMO along with their comparison with those of bulk NCMO. The nanoparticles of NCMO of mean sizes 5, 20 and 40 nm were prepared by polymer assisted sol-gel method. Solid state reaction method was used to prepare the micron sized NCMO bulk material. Different techniques like XRD, TEM, EDAX and ICPAES have been used to characterize the samples. A striking result of this particular investigation is the complete suppression of charge ordered phase in 5 and 20 nm NCMO nanoparticles as observed from the magnetization measurements [19]. Size induced insulator-metal transition TM-I is observed in nanoscale NCMO at low temperatures accompanied by ferromagnetism in accordance with Zener double exchange meachanism. CMR of 99.7% is obtained at TM-I and at a field of 11 T. EMR studies have confirmed the presence of ferromagnetic phase at low temperatures. Temperature dependent EMR line width and intensity have shown the presence of residual CO fluctuations in NCMO5 though the static magnetization measurements have shown the absence of CO phase. It is found that the EMR linewidth increases with the decrease of particle size. Low temperature X-ray diffraction measurements on NCMO20 indicate the absence of CO phase. But the preliminary results obtained from the optical spectroscopy measurements indicate the evidence for the presence of CO phase. In Chapter 4, we report the investigations on the nanoscale PSMO. PSMO nanoparticles of sizes 20, 40 and 60 nm are prepared by polymer precursor sol-gel method. PSMO nanowires of diameter 50 nm and lengths of a few microns have been prepared by hydrothermal method. The bulk polycrystalline PSMO is obtained by crushing the single crystal of the same prepared by float zone method. Various techniques like XRD, TEM, VSM, transport measurements and EMR spectroscopy have been employed to characterize and to study the size dependent magnetic, transport and electron magnetic resonance properties and to compare them with those of the bulk. Our results show that there is a disappearance of anti-ferromagnetic charge ordering phase and the appearance of a ferromagnetic phase at low temperatures in all PSMO nanoparticles and nanowires. Metal like behaviour is observed in the size induced ferromagnetic phase in nanoparticles. The EMR linewidth increases with the decrease of particle size. A comparison with the properties of the bulk material shows that the ferromagnetic transition at 265 K remains unaffected but the anti-ferromagnetic transition at TN = 150 K disappears in the nanoparticles. Further, the temperature dependence of magnetic anisotropy shows a complex behaviour, being higher in the nanoparticles at high temperatures, lower at lower temperatures in comparison with the bulk [20]. In Chapter 5, we present the fabrication, characterization and the results obtained from the magnetization and EMR measurements carried out on BCMO and BSMO nanoparticles and compare the results with those of the bulk. X-ray diffraction gives evidence for single phasic nature of the materials as well as their structures. Mono-dispersed to a large extent, isolated nanoparticles are seen in the transmission electron micrographs. High resolution electron microscopy shows the crystalline nature of the nanoparticles. Superconducting quantum interferometer based magnetic measurements from 10 K to 300 K show that these nanomanganites retain the charge ordering nature unlike the Pr and Nd based nanomanganites. The CO in Bi based manganites is thus found to be very robust consistent with the observation that magnetic fields of the order of 130 T are necessary to melt the CO in these compounds. These results are supported by electron magnetic resonance measurements [21]. In Chapter 6, we present our results on the effect of particle size on the magnetic properties of Pr0.7Pb0.3MnO3 (PPMO). PPMO nanoparticles of two different sizes (~5 nm and 30 nm) were prepared by the polymeric precursor sol-gel method. The samples are characterized by different techniques like XRD, TEM, SQUID magnetometry, EMR and optical spectroscopic measurements. It is found that the nanoparticles crystallize in the cubic perovskite structure. TEM measurements show that the 5 nm particles are uniform in size. They are also crystalline as seen by HREM and XRD measurements. SQUID magnetometry measurements have shown that the Curie temperature increases (from 220 K to 235 K) with the increase of particle size. Saturation magnetization is higher for the smaller particles studied. We have observed only one EMR signal down to 4 K in both the nanoparticles (5 and 30 nm) in contrast to the two EMR signal behaviour observed in bulk PPMO [22]. It is found that the EMR linewidth increases with the decrease of particle size in the paramagnetic phase. Temperature dependent optical spectroscopy measurements performed on 5 nm PPMO nanoparticles indicate that the insulator-metal transition temperature TM-I = 230 K, is not very different from TM-I = 235 K of the bulk sample [23] The thesis concludes with a brief writeup summarizing the results and pointing out possible future directions of research in the area.
2

Magnetic Ordering in Bulk and Nanoparticles of Certain Bismuth Based Manganites Bi1-xAxMnO3 (A = Ca, Sr) : Electron Paramagnetic Resonance and Magnetization Studies

Geetanjali, * January 2013 (has links) (PDF)
The study of bulk and nanoparticles of perovskite rare earth manganites has been an extensive area of research in the recent past due to their rich and interesting physics and potential applications [1-5]. Manganites have potential applications in the emerging field of spintronics because of their colossal magnetoresistance (CMR) [6] and half-metallic [7] properties. Nano sized materials exhibit enhanced and different electronic and magnetic properties and expected to behave quite differently compared to their bulk counterparts due to quantum confinement effects and high surface/volume ratio. Magnetic nanoparticles in particular have great potential for use in a wide range of applications including magnetic recording media, various sensors, catalysts, magnetic refrigeration, medicine etc. In this thesis we study changes in the magnetic ordering of certain bismuth based manganites Bi1-xAxMnO3 (A = Ca and Sr) using various experimental probes when we reduce their particle size to nano scale. The general formula for doped manganites is R1-xAxMnO3 where R is a trivalent rare-earth ion such as La, Nd, Pr, Sm and A is a divalent alkaline earth ion such as Ca, Sr, Ba, Pb. They became interesting due to their many intriguing properties like CMR (Colossal Magnetoresistance), phase separation, charge ordering (CO), orbital ordering (OO) and many more. These properties depend sensitively on many factors like temperature, magnetic field, pressure and doping concentration x. There is a strong coupling of spin, orbital and lattice to each other in manganites. The complex interplay of all these couplings make them strongly correlated systems. In the parent compound RMnO3 Mn ion is in Mn3+ state while it is present as Mn4+ in the compound AMnO3. The manganites with x = 0 and x = 1 are both antiferromagnetic insulators, magnetism in them being mediated by superexchange through oxygen. On doping with a divalent alkaline earth ion in RMnO3, there is a transition The properties of nanoparticles of manganites show strong surface effects. The magnetic behavior is strongly governed by the free surface spins in nanoparticles. And as the size reduces, there is suppression of charge ordering which can also disappear in very small particles [11]. Antiferromagnetism in bulk gives way to ferromagnetism in nanoparticles [12-14]. In the following we give a chapter wise summary of the results reported in the thesis. Chapter 1: This chapter of the thesis consists of a brief introduction to the physics of manganites. Further we have written a detailed overview of bismuth based manganites, properties of nano manganites and the technique of EPR. There is a section about different line shapes observed in EPR of manganites, their origin and how to fit them to appropriate lineshape function [15]. This chapter also includes a detailed account of experimental methodologies used in thesis which are: EPR spectrometer, SQUID magnetometer, X-ray diffractometer and TEM and the analysis procedure adopted in this work. Chapter 2: This chapter deals with the magnetic and EPR studies of nanoparticles (average diameter ~ 30 nm) of Bi0.25Ca0.75MnO3 (BCMO) and their comparison with the results on bulk BCMO. Bulk Bi0.25Ca0.75MnO3 (BCMOB) shows charge ordering at 230 K followed by a transition to an antiferromagnetic phase at 130 K [16]. The bulk and the nanoparticles (D ~ 30 nm) of Bi0.25Ca0.75MnO3 were prepared by solid-state reaction method and sol-gel method respectively. The two samples were investigated by using XRD, TEM, SQUID and EPR techniques. Our magnetization and EPR results show that the charge ordering disappears in nanoparticles of this composition and there emerges a ferromagnetic phase similarly to the rare earth manganites. The nanoparticles of the rare earth based manganites are found to consist of an antiferromagnetic core and a ferromagnetic shell/surface region [3, 17] and thus are expected to exhibit the ‘exchange bias (EB) effect’ [18-22] resulting in a shift of the magnetic hysteresis loop. Indeed many nanomanganites do show EB effect. However, contrary to this expectation, we find that in BCMON samples the EB effect is absent. Chapter 3: In this chapter, we report the results of temperature dependent magnetization and electron paramagnetic resonance studies on bulk and nanoparticles of electron (x = 0. 6, BCE) and hole (x = 0.4, BCH) doped Bi1-xCaxMnO3 (BCMO) and the effect of the size reduction on the electron-hole asymmetry observed in the bulk sample. Bulk sample of Bi0.4Ca0.6MnO3is a paramagnetic insulator at room temperature with Tco = 330 K and TN ~ 120 K while BiCaMnO3 undergoes a charge ordering transition at TCO = 315 K with TN ~ 150 K [16]. All the four samples were investigated by using XRD, TEM, SQUID and EPR techniques. It is shown that antiferromagnetism and charge order persist in the hole doped nano sample while ferromagnetism has emerged in the electron doped nano sample. Our magnetization and EPR results show that spin glass phase exists in bulk BCE, bulk BCH and nano BCE whereas no sign of either spin glass state or ferromagnetism is seen in nano BCH. We have shown that electron-hole asymmetry in terms of ‘g’ parameter has reduced in the nanoparticles but it has not completely disappeared in contrast with the results on Pr1-xCaxMnO3 [23]. We understand these interesting results in terms of the presence of the highly polarizable 6s2 lone pair electrons on bismuth which is known to cause many interesting departures from the behavior of rare earth manganites. We study the temperature dependence of the linewidth behavior by fitting it to the different models [24¬27] and find that Shengelaya’s model [25, 26] fits well to all the four samples describing the spin dynamics satisfactorily in the present samples. Chapter 4: In this chapter, we present the fabrication, characterization and the results obtained from the magnetization and EPR measurements carried out on bulk and nanoparticles of Bi0.1Ca0.9MnO3. We prepared the nanoparticles of BCMO by standard sol¬gel technique and bulk samples by solid state reaction method. We investigated magnetic ordering by doing temperature dependent magnetic and EPR studies on both the samples and compared the properties with each other. Bulk Bi0.1Ca0.9MnO3 (BCMB) shows mixed phase of antiferromagnetism and ferromagnetism without any charge ordered state. Our results show that the ferromagnetism exists in the bulk BCMO which is present in the nano sample as well but with somewhat weakened strength with the size reduction. The nanoparticles of the rare earth based manganites are found to consist of an antiferromagnetic core and a ferromagnetic shell/surface region and thus are expected to exhibit the more uncompensated spins on the surface which reduce the magnetization in the nanoparticles. We calculated activation energy for the two samples by fitting the intensity behavior to the Arrhenius equation [28]. Activation energy was found to decrease for nano BCMO which indicates the weaker intracluster double-exchange interaction in it. Chapter 5: This chapter deals with the comparative study of the temperature dependent magnetic properties and EPR parameters of nano and bulk samples of Bi0.2Sr0.8MnO3 (BSMO). Nanoparticles and bulk sample of BSMO were prepared by sol-gel technique and solid state reaction method respectively. Bulk BSMO has high antiferromagnetic transition temperature TN ~ 260 K and robust charge ordering (TCO ~ 360 K) [29]. We confirm that the bulk sample shows an antiferromagnetic transition around ~ 260 K and a spin-glass transition ~ 40 K. For nano sample we see a clear ferromagnetic transition at around ~ 120 K. We conclude that mixed magnetic state exists in the bulk sample whereas it is suppressed in the nano sample and strong ferromagnetism is induced instead. Chapter 6: This chapter summarizes the main conclusions of the thesis, also pointing out some future directions for research in the field.

Page generated in 0.0623 seconds