• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 227
  • 136
  • 56
  • 2
  • Tagged with
  • 417
  • 256
  • 214
  • 149
  • 120
  • 120
  • 120
  • 58
  • 57
  • 50
  • 49
  • 46
  • 45
  • 40
  • 36
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Experimentelle Untersuchung der atomaren Dynamik und der magnetischen Eigenschaften in i-ZnMgY und i-ZnMgEr/Ho

Rouijaa, Mustapha 19 April 2002 (has links)
Die Arbeit befaßt sich mit Untersuchungen der Schwingungsdynamik von ZnMgEr/Ho/Y quasikristallen. Neben diesen werden auch Untersuchungen der magnetischen Eigenschaften durch Neutronenstreuung an denselben Proben durchgeführt.
242

Phase separation and structure formation in gadolinium based liquid and glassy metallic alloys

Han, Junhee 14 April 2014 (has links)
In this PhD research the liquid-liquid phase separation phenomena in Gd-based alloys was investigated in terms of phase equilibria, microstructure formation upon quenching the melt and corresponding magnetic properties of phase-separated metallic glasses. The phase diagrams of the binary subsystems Gd-Zr and Gd-Ti were experimentally reassessed. Especially the phase equilibria with the liquid phase could be determined directly by combining in situ high energy synchrotron X-ray diffraction with electrostatic levitation of the melt. The Gd-Zr system is of eutectic type with a metastable miscibility gap. The eutectic composition at 18 ± 2 at.% Zr, the liquidus line and the coexistence of bcc-Zr and bcc-Gd at elevated temperature could be determined. The Gd-Ti system is a monotectic system. The experimental observations in this work led to improved new Gd-Zr and Gd-Ti phase diagrams. The phase equilibria of the ternary Gd-Ti-Co system were analyzed for two alloy compositions. The XRD patterns for molten Gd35Ti35Co30 gave direct evidence for the coexistence of two liquid phases formed by liquid-liquid phase separation. The first experimental and thermodynamic assessment of the ternary Gd–Ti–Co system revealed that the stable miscibility gap of binary Gd–Ti extends into the ternary Gd–Ti–Co system (up to about 30 at.% Co). New phase-separated metallic glasses were synthesized in Gd-TM-Co-Al (TM = Hf, Ti or Zr) alloys. The microstructure was characterized in terms of composition and cooling rate dependence of phase separation. Due to large positive enthalpy of mixing between Gd on the one side and Hf, Ti or Zr on the other side, the alloys undergo liquid-liquid phase separation during rapid quenching the melt. The parameters determining the microstructure development during phase separation are the thermodynamic properties of the liquid phase, kinetic parameters and quenching conditions. By controlling these parameters and conditions the microstructure can be tailored both at microscopic and macroscopic length scales. This includes either droplet-like or interconnected microstructures at the microscopic level and glass-glass or glass-crystalline composites at the macroscopic level. Essential parameter for the quenched in microstructure is the temperature dependence of liquid-liquid phase separation, which is determined by the chemical composition of the alloy: on the one hand, earlier and/or later stages of spinodal decomposition or almost homogeneous glassy states are obtained if the critical temperature of miscibility gap Tc is close to the glass transition temperature Tg; and on the one hand, coarsening and secondary precipitations of the liquids are obtained if Tc is much higher than Tg. Finally, the influence of the microstructure developed by phase separation on their magnetic properties had been investigated. The saturation magnetization σS depends on the overall amount of Gd atoms in the alloys and is not remarkably affected by phase separation processes. The Curie temperature TCurie of the magnetic transition is influenced by the changed chemical composition of the Gd-rich glassy phases compared to that of monolithic Gd-Co-Al glasses. / In dieser Doktorarbeit wurde die flüssig-flüssig Phasenentmischung von Gd-basierten Legierungen hinsichtlich der Phasengleichgewichte, der Gefügeentwicklung während der Schmelzabschreckung und dazugehöriger magnetischer Eigenschaften, untersucht. Die Zustandsdiagramme der binären Untersysteme Gd-Zr undGd-Ti wurden experimentell ermittelt.. Insbesondere konnten die Phasengleichgewichte mit der flüssigen Phase mittels in-situ Röntgenbeugungsmessunngen an elektrostatisch levitierten Schmelzen direkt, bestimmt werden. Das Gd-Zr System stellt ein ein eutektisches Phasendiagram dar und besitzt eine metastabile Mischungslücke. Die eutektische Zusammensetzung wurde mit 18 ± 2 at.%Zr bestimmt und der Verlauf der Liquiduslinie bei erhöhten Temperaturen wurde experimentell ermittelt. Experimentell wurde die Koexistenz von kubisch-raumzentrierten Zr und Gd in einem Bereich bei hohen Temperaturen nachgewiesen. Das Gd-Ti-System ist von monotektischer Art. Die experimentellen Beobachtungen dieser Arbeit trugen wesentlich zur Verbesserung der Beschreibung der Phasendiagaramme Gd-Zr- und Gd-Ti-Phasenbei. Die Phasengleichgewichte des ternären Gd-Ti-Co-Systems wurde anhand zweier Legierungszusammensetzungen untersucht. Die Röntgenbeugungsdiffraktogramme der geschmolzenen Legiereung Gd35Ti35Co30 sind ein direkter Beleg für die Koexistenz zweier flüssiger Phasen, aufgrund der flüssig-flüssig Phasenentmischung. Die erste experimentelle und thermodynamische Auswertung des ternären Gd-Ti-Co-Systems zeigt, dass sich die stabile Mischungslücke des binären Gd-Ti-Systems ins ternäre Gd-Ti-Co-System bis zu ungefähr 30 at.% Co erstreckt. Es wurden neue Gd-TM-Co-Al (TM = Hf, Ti oder Zr)-basierte metallische Gläser, die separierte Phasen besitzen, hergestellt. Ihr Gefüge wurden hinsichtlich Zusammensetzung- und Abkühlratenabhängigkeit der Phasenentmischung charakterisiert. Aufgrund der großen positiven Mischungsenthalpie zwischen Gd auf der einen und Hf, Ti oder Zr auf der anderen Seite, weisen diese Legierungen eine flüssig-flüssig Phasenentmischung während der Abschreckung aus der Schmelze auf. Die Einflussgrößen, die die Gefügeentwicklung während der Phasenentmischung bestimmen, sind die thermodynamischen Eigenschaften der flüssigen Phase, die kinetische Parameter und die Abschreckbedingungen. Indem diese Parameter und Bedingungen kontrolliert werden, kann das Gefüge auf makro- sowie mikroskopischer Längenskala maßgeschneidert werden. Dies beinhaltet entweder tropfenförmige oder miteinander verbundene Gefüge auf einer mikroskopischen Skala und Glas-Glas oder Glas-Kristall Komposite auf einer makroskopischen Längenskala. Ein wesentlicher Parameter für das abgeschreckte Gefüge ist die Temperatur-Abhängigkeit der flüssig-flüssig Phasenentmischung, die durch die chemische Zusammensetzung der Legierung bestimmt wird. Frühere und/oder spätere Stadien der spinodalen Entmischung oder nahezu homogene amorphe Zustände können abhängig von dem Temperaturunterschied zwischen kritischer Temperatur der flüssig-flüssig Phasenentmischung und der Glasübergangstemperatur erhalten werden. Wenn die kritische Temperatur der Mischungslücke, Tc, viel höher ist als die des Glasübergangs, Tg, können makroskopische Vergröberungen der tropfenförmigen Verteilung der flüssigen Phase und sekundäre flüssige oder kristalline Ausscheidungen in den gebildeten amorphen Phasen erhalten werden. Durch die Phasenentmischung und die erhaltenen heterogenen Gefüge werden die magnetischen Eigenschaften beeinflusst.. Die Sättigungsmagnetisierung,σS, hängt von der gesamten Anzahl der Gd-Atome der Legierung ab und wird nicht bemerkenswert vom Phasenentmischungsprozess beeinflusst. Die Curie Temperatur TCurie wird im Vergleich zu monolithischen Gd-Co-Al Gläsern, und abhängig von der chemischen Zusammensetzung der Gd-reichen Phase, verändert.
243

Wege zur Optimierung magnetokalorischer Fe-basierter Legierungen mit NaZn13-Struktur für die Kühlung bei Raumtemperatur

Krautz, Maria 19 December 2014 (has links)
Die magnetische Kühlung ist eine etablierte Technologie im Bereich der Tieftemperaturphysik. Allerdings bieten die Skalierbarkeit des magnetokalorischen Effektes und die Möglichkeit zur kompakten Bauweise auch ein breites Anwendungsspektrum für den Einsatz bei Raumtemperatur. Besonders hervorzuheben ist die Möglichkeit zur Anpassung der magnetostrukturellen Umwandlungstemperatur in La(Fe, Si)13-basierten Materialien an die Arbeitstemperatur einer Kühleinheit. Die Herstellung von Ausgangsmaterial über das Schmelzspinnen, ist von hoher technologischer Relevanz, da im Vergleich zu konventionell gegossenem Massivmaterial die anschließende Glühdauer drastisch reduziert werden kann [1]. In der vorliegenden Arbeit wird zunächst auf die optimalen Glühbedingungen in rasch-erstarrtem Bandmaterial für die Bildung der relevanten magnetokalorischen Phase eingegangen. Durch Variation der Glühtemperatur wird der Einfluss von Sekundärphasen auf den magnetokalorischen Effekt bewertet. Darüber hinaus können bei optimaler Wahl der Legierungszusammensetzung ein großer magnetokalorischer Effekt und der gewünschte Arbeitstemperaturbereich eingestellt werden. Besonderes Augenmerk wird auf die Verknüpfung des Substitutionseffektes (hier: Si für Fe) und der Aufweitung des Gitters durch Hydrierung mit dem resultierenden magnetokalorischen Effekt gelegt. Ein weiterer Punkt, sind die Untersuchungen zur Langzeitstabilität der Eigenschaften von hydriertem Band- und Massivmaterial. Grundlegende und umfassende Untersuchungen zur Substitution von Eisen durch Mangan und zum daraus folgenden Einfluss auf Phasenbildung, Umwandlungstemperatur sowie auf den magnetokalorischen Effekt, insbesondere nach der Hydrierung, werden ebenfalls dargestellt. Die Ergebnisse der vorliegenden Arbeit erlauben damit die Bewertung verschiedener Strategien zur Optimierung der magnetokalorischen Eigenschaften von La(Fe, Si)13.
244

Scanning tunneling microscopy on low dimensional systems: dinickel molecular complexes and iron nanostructures

Salazar Enríquez, Christian David 28 September 2016 (has links)
This thesis contains experimental studies on low dimensional systems by means of scanning tunneling microscopy (STM). These studies include investigations on dinickel molecular complexes and experiments on iron nanostructures used for the implementation of the spin-polarized scanning tunneling microscopy technique at the IFW-Dresden. Additionally, this work provides detailed information of the experimental technique (STM), from the theoretical background to the STM-construction, which was part of this doctoral work. Molecular anchoring and electronic properties of macrocyclic magnetic complexes on gold surfaces have been investigated by mainly scanning tunneling microscopy and complemented by X-rays photoelectron spectroscopy. Exchange–coupled macrocyclic complexes [Ni2L(Hmba)]+ were deposited via 4-mercaptobenzoate ligands on the surface of Au(111) single crystals. The results showed the success of gold surface-grafted magnetic macrocyclic complexes forming large monolayers. Based on the experimental data, a growth model containing two ionic granular structures was proposed. Spectroscopy measurements suggest a higher gap on the cationic structures than on the anionic ones. Furthermore, the film stability was probed by the STM tip with long-term measurements. This investigation contributes to a new promising direction in the anchoring of molecular magnets to metallic surfaces. Iron nanostructures of two atomic layers and iron-coated tungsten tips were used in order to implement the spin-polarized scanning tunneling microscopy technique at the IFW-Dresden. First of all, a systematic study of the iron growth, from sub-monolayers to multilayers on a W(110) crystal is presented. Subsequent to the well-understanding of the iron growth, the experiments were focused on revealing, for the first time at the IFW-Dresden, the magnetic inner structure of iron nanostructures. The results evidently showed the presence of magnetic domains of irregular shapes. Furthermore, SP-STM probed the bias voltage dependence of the magnetic contrast on the iron nanostructures. This technique opens up a new powerful research line at the IFW-Dresden which is promising for the study of quantum materials as molecular magnets and strongly correlated systems.
245

Topological defect-induced magnetism in a nanographene

Mishra, Shantanu, Beyer, Doreen, Berger, Reinhard, Liu, Junzhi, Gröning, Oliver, Urgel, José I., Müllen, Klaus, Ruffieux, Pascal, Feng, Xinliang, Fasel, Roman 13 January 2021 (has links)
The on-surface reactions of 10-bromo-10'-(2,6-dimethylphenyl)-9,9'-bianthracene on Au(111) surface have been investigated by a combination of bond-resolved scanning tunneling microscopy, scanning tunneling spectroscopy, and tightbinding and mean-field Hubbard calculations. The reactions afford the synthesis of two open-shell nanographenes (1a and 1b) exhibiting different scenarios of all-carbon magnetism. 1a, an allbenzenoid nanographene with previously unreported triangulenelike termini, contains a high proportion of zigzag edges, which endows it with an exceedingly low frontier gap of 110 meV and edge-localized states. The dominant reaction product (1b) is a non-benzenoid nanographene consisting of a single pentagonal ring in a benzenoid framework. The presence of this nonbenzenoid topological defect, which alters the bond connectivity in the hexagonal lattice, results in a non-Kekulé nanographene with a spin S = ½, which is detected as a Kondo resonance. Our work provides evidence of all-carbon magnetism, and motivates the use of topological defects as structural elements toward engineering agnetism in carbon-based nanomaterials for spintronics.
246

Strahlkopplung von Tandetron-Beschleuniger und Ionenimplanter zur Durchführung von Mehrstrahlexperimenten im Forschungszentrum Rossendorf

Neumann, Wolfgang, Richter, Bernd, Tyrroff, Horst January 2001 (has links)
Im Sommer 1999 wurde im Forschungszentrum eine Zweistrahlführung in Betrieb genommen. Dieses System gestattet, Ionenarten aus unterschiedlichen Beschleunigern gleichzeitig in die Experimentierstationen zu lenken. In der Doppelimplantationsstation wird die Zweistrahlführung zur Synthese neuartiger Materialien genutzt. In der Analysestation wird die Zweistrahlführung in Kombination mit einem magnetischen Browne-Buechner-Spektrometer eingesetzt, um komplexe und hochgenaue Materialanalysen durchzuführen. Das System überträgt Ionen des gesamten Teilchen- und Energiespektrums von 3-MV-Tandetron-Beschleuniger und 500-kV-Ionenimplanter mit minimalen Intensitätsverlusten zu den Experimenten. Steuerung und Kontrolle von Beschleunigern, Strahlführung und Experiment erfolgen in einem hierarchischen Rechnernetz. Die hier beschriebene Zweistrahlanlage ist Teil eines Projekts zur umfassenden Kopplung von Basisgeräten des Forschungszentrums.
247

Wachstum, Mikrostruktur und hartmagnetische Eigenschaften von Nd-Fe-B-Schichten

Hannemann, Ullrich 21 July 2004 (has links)
In dieser Arbeit wurden mit der gepulsten Laserdeposition Nd-Fe-B-Schichten abgeschieden. Diese Schichten wurden auf einem geheizten Substrat deponiert und reagierten zu der hart-magnetischen Nd2Fe14B-Phase. Eine weitere Phase in den Schichten ist Neodym aufgrund der überstöchiometrischen Abscheidung von Neodym zur Unterstützung der Phasenbildung von Nd2Fe14B und zur Entkoppelung der Nd2Fe14B-Körner. Für die Mikrostruktur und die magnetischen Eigenschaften der Schichten sind die Grenzflächen zum Substrat und zur Umgebung von entscheidender Bedeutung, da sich die überwiegende Anzahl der Körner im Kontakt mit zumindest einer der beiden Grenzflächen befindet. Aus diesem Grund stand die Untersuchung des Einflusses der Grenzflächen auf das Wachstum, die Mikrostruktur und die magnetischen Eigenschaften der Nd-Fe-B-Schichten im Mittelpunkt der Arbeit. Die Nd-Fe-B-Schichten wurden sowohl auf Chrom- als auch auf Tantalbuffern deponiert. Ein Buffer wurde zur Einstellung der Mikrostruktur und zum Schutz der Nd-Fe-B-Schicht vor Diffusion und Reaktionen mit den Elementen des Substrates benutzt. Die Untersuchungen zeigten, dass der Chrombuffer diese Bedingungen nur unzureichend erfüllt. Die Schichten, die auf dem Tantalbuffer deponiert wurden wachsen bei tiefen Depositionstemperaturen als zusammenhängende Schicht auf und zeigen eine magnetische Vorzugsorientierung mit der magnetisch leichten Richtung parallel zur Substratnormalen. Mit steigender Depositionstemperatur verbessert sich die Ausprägung der magnetischen Vorzugsorientierung bis die vollständige Ausrichtung aller magnetischen Momente parallel zur Substratnormale erreicht ist. Die Topologie dieser Schichten weist einzeln stehende Nd2Fe14B-Körner auf, was durch ein nicht benetzendes Verhalten von Nd2Fe14B auf Tantal erklärt wird. An Schichten, die bei Depositionstemperaturen um 630 °C auf dem Tantalbuffer abgeschieden wurden, konnte das epitaktische Wachstum von Nd2Fe14B nachgewiesen werden. Auch diese Schichten zeigen die Mikrostruktur der isoliert voneinander stehenden Körner. Obwohl die Korngröße dieser Körner etwa 2 µm beträgt, zeigen diese Schichten ein Koerzitivfeld von bis zu 2 T. Diese hohen Werte des Koerzitivfeldes werden durch die Vermeidung des Einbaus von Defekten in den Körnern erreicht. Zusammenfassend können diese Schichten als mikrometergroße und parallel zueinander angeordnete Einkristalle beschrieben werden. Aus diesem Grund konnten mit diesen Schichten Einkristallmessungen wie die Temperaturabhängigkeit der Sättigungspolarisation und des Spinreorientierungswinkels reproduziert werden. Aufgrund des epitaktischen Wachstums von Nd2Fe14B auf Tantal(110) konnte auch auf amorphen Substraten hochremanente und hochkoerzitive Schichten abgeschieden werden. Dafür wird ausgenutzt, dass der Tantalbuffer auch auf einem amorphen Substrat aufgrund der Wachstumauslese texturiert aufwächst und auf den einzelnen Körnern des texturierten Tantalbuffers die Nd2Fe14B-Körner lokal epitaktisch nukleieren können. Die Nd2Fe14B-Körner dieser Schichten sind nicht isoliert voneinander, sondern zeigen eine zusammenhängende Topologie. Diese Schichten besitzen ein Koerzitivfeld von etwa 1,3 T. Da Nd2Fe14B eine leicht oxidierende Phase ist, müssen die Nd-Fe-B-Schichten vor Korrosion geschützt werden. So wurde gezeigt, dass das Koerzitivfeld bei an Luft gelagerten Schichten innerhalb von einer Woche auf die Hälfte des ursprünglichen Wertes abfällt. Dieser Abfall konnte durch Defekte bzw. weichmagnetische Phasen als Ergebnis der Oxidation an den Oberflächen der Nd2Fe14B-Körnern erklärt werden. Die Verhinderung der Oxidation und damit der Verschlechterung der magnetischen Eigenschaften konnte sehr effektiv, d.h. ohne eine messbare Veränderung der magnetischen Eigenschaften über einen Zeitraum von 6 Monaten; durch die Abscheidung einer Chromdeckschicht erreicht werden.
248

High Frequency Behaviour of Magnetic Thin Film Elements for Microelectronics

Chumakov, Dmytro 20 November 2006 (has links)
Magnetismus ist ein Phänomen, das eine wichtige Rolle in einer Vielfalt technischer Anwendungen spielt. Ohne den Einsatz magnetischer Effekte und Materialen wäre der heutzutage erreichte technische Fortschritt unmöglich, da viele grundlegende Techniken wie Stromerzeugung, elektrischer Antrieb, Informationsübertragung und viele andere auf magnetische bzw. elektromagnetische Phänomene zurückzuführen sind. Dabei haben die ferromagnetischen Materialen stets zur Effizienz von elektrischen und elektronischen Anwendungen beigetragen, weswegen an diesen Materialen auch entsprechend viel geforscht worden ist. Moderne Technologien, insb. Massenspeicher basieren oft auf Ferromagneten und erfordern daher die weitere Erforschung und Anpassung ihrer Eigenschaften. Für die Funktionalität von Hochgeschwindigkeitsgeräten spielt das dynamische Verhalten dünner magnetischer Schichten eine kritische Rolle. In dieser Arbeit wird die Magnetisierungsdynamik dünner Schichtelemente mittels zeitaufgelöster Weitfeld- Kerrmikroskopie untersucht. Dies ist ein aktuelles Thema, an dem in den letzten Jahren sehr intensiv gearbeitet wird. Allerdings sind viele für die Anwendungen sehr wichtige Details des magnetischen Schaltens wegen ihre Vielfältigkeit und Komplexität doch nicht vollständig untersucht und verstanden. In dieser Arbeit werden überwiegend experimentelle Ergebnisse vorgestellt, die einen zusätzlichen Beitrag zum aktuellen Wissenstand leisten. In einem ferromagnetischen Körper bilden sich Bereiche mit spontaner Magnetisierung, die man als Domänen bezeichnet. Die spontane Magnetisierung entsteht aufgrund der Spin-Spin Wechselwirkung, und die Domänen bilden sich aufgrund der Energieminimierung des magnetisierten Körpers. Langsame Magnetisierungsprozesse werden im Wesentlichen getragen von Domänenumordnungen und Domänengrenzenverschiebungen. Solche Prozesse bezeichnet man als quasistatisch, da sich der Körper durch deren Langsamkeit immer im Gleichgewicht oder zumindest sehr nahe daran befindet. Mit zunehmender Anregungsgeschwindigkeit gilt diese Annahme nicht mehr, da die Präzessionsbewegung der magnetischen Momente das Schaltverhalten in diesem Fall definiert. Die Untersuchung der Magnetisierungsdynamik setzt die Möglichkeit voraus, nicht-unterbrochene Prozesse beobachten zu können. Dieses Ziel kann mittels stroboskopischer Abbildung erreicht werden. Dabei wird derselbe Prozess kontinuierlich wiederholt (vorausgesetzt, dass die Prozesse sich reproduzierbar wiederholen lassen), und zu definierten Zeitpunkten werden die entsprechenden Kerraufnahmen gemacht. Dafür wird eine CCD Kamera mit einem Photoverstärker benutzt, welcher als optischer Schalter fungiert. Die Zeitauflösung dieses Systems und damit auch das Vermögen, die Hochfrequenzvorgänge abzubilden, beträgt 250 ps. Die Eigenschaften des magnetischen Umschaltens hängen stark von der Elementgeometrie ab. Diese Unterschiede sind auf unterschiedliche Entmagnetisierungsfaktoren, und damit auf Unterschiede in den effektiven Feldern zurückzuführen. Solche Unterschiede werden auf zwei Weisen initiiert: ein quadratisches Element wird entlang unterschiedlicher Richtungen (entlang der Seite und der Diagonalen) angeregt; die Form des Elementes wird zwischen Quadrat und Rechteck mit unterschiedlichen Seitenverhältnissen variiert. Die beobachteten Schaltvorgänge werden miteinander verglichen und die Ergebnisse dargestellt. Dabei werden auch die dynamischen Vorgänge immer mit den quasistatischen verglichen. Aus dem Vergleich folgt, dass ein steigendes Seitenverhältnis zur geringeren Schaltgeschwindigkeit führt, und dass die dabei entstehenden Domänen zunehmend komplexer werden. Dabei gibt es wesentliche Unterschiede zwischen den dynamischen und quasistatischen Domänen, vor allem in der Domänenwandstruktur. Das Schalten an sich unterscheidet sich auch sehr stark. Quasistatisches Schalten erfolgt überwiegend durch Domänenwandbewegung, während das dynamische Schalten durch inkohärente Rotation der Magnetisierung im ganzen Element erfolgt. Das Hochfrequenzverhalten am Prototypen eines Mikroinduktors wird untersucht. Der Induktor besteht aus vielen magnetischen Elementen, die eine induzierte uniaxiale Anisotropie besitzen. Diese ist bei der Hälfte der Elemente entlang des Magnetfeldes, und bei der anderen Hälfte senkrecht zum Magnetfeld der Spule ausgerichtet. Das dynamische Verhalten der beiden Elementtypen unterscheidet sich stark, vor allem die Ummagnetisierungsgeschwindigkeit. Diese Unterschiede können zu einer Phasenverschiebung im elektrischen Signal führen, was die Effizienz des Induktors senkt. Durch die Untersuchung der Magnetisierungsdynamik in Wechselfeldern unterschiedlicher Frequenz ist auch festgestellt worden, dass bis 100 MHz die Magnetisierungsvorgänge überwiegend durch Domänenwandbewegung erfolgen, während ab 200 MHz- Rotationsprozesse stattfinden.
249

Mikrotextur und magnetische Mikrostruktur in Hartmagneten aus (Nd,Pr)2Fe14B-Verbindungen

Khlopkov, Kirill 10 January 2007 (has links)
In der vorliegenden Arbeit werden die Zusammenhänge zwischen der magnetischen Mikrostruktur und der Ausrichtung der Kristallite, sowohl in Sintermagneten als auch in feinkristallinen, warmumgeformten Magneten auf Nd2Fe14B- und Pr2Fe14B-Basis, untersucht. Die EBSD-Technik (electron backscatter diffraction) wurde für Sintermagnete und für feinkristalline, warmumgeformte Magnete auf Nd2Fe14B-Basis erstmals erfolgreich eingesetzt, um eine quantitative Texturanalyse durchzuführen. Die Polfiguren des hoch texturierten Sintermagneten bzw. warmumgeformten Magneten zeigen eine stark ausgeprägte [001] Fasertextur. Aus dem Vergleich von REM-, EBSD- und Kerr-Untersuchungen an ein- und derselben Probenoberfläche der Sintermagnete konnte quantitativ gezeigt werden, wie die Domänenstruktur von der individuellen Orientierung der Nd2Fe14B-Körner abhängt. Die Domänenstruktur der hoch texturierten Sintermagnete weist auf eine starke magnetostatische Wechselwirkung zwischen den Kristalliten hin. In den Heißpresslingen und in den warmumgeformten Magneten auf Nd2Fe14B-Basis und Pr2Fe14B-Basis wurden Wechselwirkungsdomänen mittels Magnetkraftmikroskopie nachgewiesen. Die Wechselwirkungsdomänen, deren Größe stark vom Umformgrad abhängt, sind immer größer als die einzelnen Kristallite. Die Bildung der Wechselwirkungsdomänen wurde auf magnetostatische Wechselwirkung zwischen den Kristalliten zurückgeführt, was mit Hilfe der Wohlfarth-Analyse der Remanenzverhältnisse bestätigt werden konnte. Die magnetische Mikrostruktur der warmumgeformten Magnete wurde mit einem Modell, das auf der Bildung von Ketten magnetischer Momente (parallel zur Kettenachse) beruht, beschrieben. Unterhalb der Temperatur des Spinumorientierungsüberganges der Nd2Fe14B-Phase weisen die Sintermagnete rechteckige Domänenmuster auf. Diese magnetische Mikrostruktur wird durch eine spezifische Verteilung der Domänenwände in Bezug auf Änderungen der magnetischen Anisotropie ausgebildet. Im Gegensatz dazu ändern sich die Wechselwirkungsdomänen in dem warmumgeformten Magneten nicht, was auf die starke magnetostatische Wechselwirkung zwischen den Kristalliten zurückgeführt wurde. / In this work, the correlation between magnetic domain structure and grain alignment in sintered and die-upset magnets, based on Nd2Fe14B and Pr2Fe14B compounds, is investigated. For the first time, EBSD (electron backscatter diffraction) has been successfully applied to conduct a quantitative analysis of the texture of sintered and die-upset Nd2Fe14B magnets. Pole figures of the highly textured sintered and die-upset magnets show a strong [001] fiber texture. By a comparison of SEM, EBSD and Kerr images of the same surface of sintered magnets it was possible to correlate the domain structure of individual grains to their orientation. The domain structure of the highly textured sintered magnet indicates to the presence of a strong magnetostatic interaction between individual grains. Interaction domains have been studied in hot-pressed und die-upset magnets based on Nd2Fe14B and Pr2Fe14B compounds by MFM. The lateral expansion of interaction domains is always larger than grain size and depends from the degree of deformation. The formation of interaction domains is attributed to magnetostatic interaction between individual grains, which has been confirmed by a Wohlfarth’s analysis of the remanence ratio. The magnetic domain structure of die-upset magnets can be described by a model, based on the formation of chains of magnetic moments parallel to the chain direction. Below the spinreorientation temperature of the Nd2Fe14B phase, sintered magnets show a rectangular domain structure. This domain structure is formed by a specific domain wall distribution corresponding to changes of the magnetocrystalline anisotropy. In contrast to this, the interaction domains in the die-upset magnets show no changes below the spinreorientation temperature, what can be also ascribed to the magnetostatic interaction between individual grains.
250

Local imaging of magnetic flux in superconducting thin films

Shapoval, Tetyana 26 January 2010 (has links)
Local studies of magnetic flux line (vortex) distribution in superconducting thin films and their pinning by natural and artificial defects have been performed using low-temperature magnetic force microscopy (LT-MFM). Taken a 100 nm thin NbN film as an example, the depinning of vortices from natural defects under the influence of the force that the MFM tip exerts on the individual vortex was visualized and the local pinning force was estimated. The good agreement of these results with global transport measurements demonstrates that MFM is a powerful and reliable method to probe the local variation of the pinning landscape. Furthermore, it was demonstrated that the presence of an ordered array of 1-μm-sized ferromagnetic permalloy dots being in a magneticvortex state underneath the Nb film significantly influences the natural pinning landscape of the superconductor leading to commensurate pinning effects. This strong pinning exceeds the repulsive interaction between the superconducting vortices and allows vortex clusters to be located at each dot. Additionally, for industrially applicable YBa$_2$Cu$_3$O$_{7-\delta} thin films the main question discussed was the possibility of a direct correlation between vortices and artificial defects as well as vortex imaging on rough as-prepared thin films. Since the surface roughness (droplets, precipitates) causes a severe problem to the scanning MFM tip, a nanoscale wedge polishing technique that allows to overcome this problem was developed. Mounting the sample under a defined small angle results in a smooth surface and a monotonic thickness reduction of the film along the length of the sample. It provides a continuous insight from the film surface down to the substrate with surface sensitive scanning techniques.

Page generated in 0.1004 seconds