• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 7
  • 5
  • 5
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 61
  • 61
  • 28
  • 24
  • 18
  • 16
  • 14
  • 14
  • 14
  • 12
  • 11
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Spin-transfer Torque in Magnetic Nanostructures

Xiao, Jiang 30 May 2006 (has links)
This thesis consists of three distinct components: (1) a test of Slocnzewski's theory of spin-transfer torque using the Boltzmann equation, (2) a comparison of macrospin models of spin-transfer dynamics in spin valves with experimental data, and (3) a study of spin-transfer torque in continuously variable magnetization. Slonczewski developed a simple circuit theory for spin-transfer torque in spin valves with thin spacer layer. We developed a numerical method to calculate the spin-transfer torque in a spin valve using Boltzmann equation. In almost all realistic cases, the circuit theory predictions agree well with the Boltzmann equation results. To gain a better understanding of experimental results for spin valve systems, current-induced magnetization dynamics for a spin valve are studied using a single-domain approximation and a generalized Landau-Lifshitz-Gilbert equation. Many features of the experiment were reproduced by the simulations. However, there are two significant discrepancies: the current dependence of the magnetization precession frequency, and the presence and/or absence of a microwave quiet magnetic phase with a distinct magnetoresistance signature. Spin-transfer effects in systems with continuously varying magnetization also have attracted much attention. One key question is under what condition is the spin current adiabatic, i.e., aligned to the local magnetization. Both quantum and semi-classical calculations of the spin current and spin-transfer torque are done in a free-electron Stoner model. The calculation shows that, in the adiabatic limit, the spin current aligns to the local magnetization while the spin density does not. The reason is found in an effective field produced by the gradient of the magnetization in the wall. Non-adiabatic effects arise for short domain walls, but their magnitude decreases exponentially as the wall width increases.
12

Magnetization Dynamics at Elevated Temperatures

Xu, Lei January 2013 (has links)
The area of ultrafast (sub-nanosecond) magnetization dynamics of ferromagnetic elements and thin films, usually driven by a strong femtosecond laser pulse, has experienced intense research interest. In this dissertation, laser-induced demagnetization is theoretically studied by taking into account interactions among electrons, spins, and lattice. We propose a microscopic approach under the three temperature framework and derive the equations that govern the demagnetization at arbitrary temperatures.To address the question of magnetization reversal at high temperatures, the conventional Landau-Lifshitz equation is obviously unsatisfactory, since it fails to describe the longitudinal relaxation. So by using the equation of motion for the quantum density matrix within the instantaneous local relaxation time approximation, we propose an effective equation that is capable of addressing magnetization dynamics for a wide range of temperatures. The longitudinal and transverse relaxations are analyzed, magnetization reversal processes near Curie temperatures is also studied. Furthermore, we compared our derived Self-consistent Bloch equation and Landau-Lifshitz-Bloch equation in detail. Finally, the demagnetzation dynamics for ferromagnetic and ferrimagnetic alloys is studied by solving the Self-consistent Bloch equation.
13

Magnetization dynamics in NiFe thin films

Santoni, Albert 12 April 2011 (has links)
The morphology, composition, and magnetic properties of NiFe thin films were characterized. Films with thicknesses up to 137 nm were deposited in an RF induction evaporator at high vacuum (10^-8 mbar). Time resolved magneto-optic Kerr effect microscopy (TR-MOKE) was used to measure the Gilbert damping constant, an important dynamic magnetic property with applications to magnetic data storage. The composition of each film was measured with energy-dispersive X-ray (EDX) microscopy and used to determine the weight percent of Ni and Fe in each film. A trend of increased damping with increased thickness was found, in agreement with published results. Magnetic properties and roughness were found to differ significantly from previous films grown in the same vacuum chamber by Rudge, and are attributed to different growth modes produced by differing deposition conditions. However, the weight percent of Ni in each film was found to be inconsistent, deviating by up to 7% from the Ni80Fe20 evaporation source. Inconsistent composition, caused by the inability to control deposition parameters, prevents insight into Gilbert damping from being drawn from the analysis. / Graduate
14

Magnetization dynamics in lithographically patterned Ni80Fe20/Ir20Mn80 exchange-biased square elements

Xu, Haitian 27 August 2012 (has links)
The magnetic properties and crystal texture of micron-sized, lithographically patterned ferromagnetic/antiferromagnetic (FM/AF) exchange-coupled elements supporting vortex remanent magnetization states were characterized using experimental and numerical modeling techniques. 10umx10um square elements consisting of Ni80Fe20/Ir20Mn80 bilayers prepared on silicon and glass substrates using e-beam lithography and magnetron sputtering were thermomagnetically annealed under various in-plane cooling fields to induce exchange bias. Longitudinal and time-resolved Kerr effect microscopy were employed to measure the quasi-static hysteresis and dynamic response, while X-ray diffraction analysis was used to probe their crystal texture under different deposition and substrate conditions. The FM layer was found to be critical for the development of the necessary texture and spin alignment in the AF for creating interfacial exchange-bias. The exchange-bias field was found to significantly alter the magnetic behavior of the samples, leading to the stabilization of the vortex structure and asymmetric hysteresis loop shift in the quasi-static regime, as well as precessional frequency reduction of the bottom domain in the dynamic regime. Numerical simulations showed good qualitative agreement with both experimental observations and existing literature, and revealed the origin of the precessional frequency reduction as the different spin-wave eigenmodes excited by different remanent magnetization states. / Graduate
15

Estudo do efeito de transferência de spin

Accioly, Artur Difini January 2011 (has links)
A ideia de transferência de spin, como forma de controle da magnetização, foi introduzida independentemente por Slonczewski e por Berger em 1996. Desde então, esse efeito tem sido alvo de inúmeras pesquisas, em especial pela possibilidade de aplicações em memorias magnéticas não voláteis e em osciladores de alta frequência. Devido _a complexidade do problema, a grande maioria das pesquisas teóricas sobre o assunto _e baseada em resultados numéricos. Porém, esses métodos podem dificultar a visualização das influências individuais dos diferentes termos envolvidos. Para isso, seria melhor a utilização de métodos analíticos, o que nos motiva a buscar por esses resultados. Nesse trabalho, apresentamos uma revisão sobre a teoria básica do efeito de transferência de spin e da dinâmica da magnetização. São revistas as principais equações que descrevem o comportamento da magnetização, as equações de Landau-Lifshitz e de Landau-Lifshitz-Gilbert, e comparadas suas componentes quando da inclusão do termo de transferência, analisando a melhor forma de incluir esse termo. É destacada a contribuição dada pelo termo de transferência na frequência de precessão da magnetização, que aparece ao se utilizar a equação de Landau-Lifshitz-Gilbert. Após essa revisão dos conceitos base, são buscadas soluções analíticas para a dinâmica da magnetização da camada livre de um sistema nanopilar em tricamada. Quatro casos são analisados: primeiro um sistema sem anisotropias e sem a inclusão do campo de Oersted, no segundo caso é incluído um termo de anisotropia e no terceiro novamente um sistema sem anisotropias, mas com a inclusão do campo de Oersted. Todas essas análises são feitas em uma aproximação de macrospin. Por último, uma aproximação de microspin com campo de Oersted. Nos três primeiros casos, é possível obter resultados analíticos e simular os resultados. São estimados o tempo de reversão e a frequência de precessão estável. / The idea of spin transfer as a way to control magnetization was introduced independently by Slonczewski and Berger in 1996. Since then, this e ect has been the subject of numerous studies, especially for potential applications in nonvolatile magnetic memories and high-frequency oscillators. Due to the complexity of the problem, the vast majority of theoretical research on this subject is based on numerical results. However, these methods might not display the in uences of individual terms involved. For this, it would be better to use analytical methods, which motivates us to search for these results. In this paper, we review the basic theory of spin transfer e ect and of magnetization dynamics. We review the main equations that describe the behavior of magnetization, the Landau-Lifshitz and Landau-Lifshitz-Gilbert equations, and compare its components when inserting the spin torque term, analyzing the best way to include this term. The contribution of spin transfer on magnetization precession frequency, which appears when using the Landau-Lifshitz- Gilbert equation, is emphasized. After this review of basic concepts, analytical solutions for magnetization dynamics of the free layer in a tri-layer nanopillar are searched. Four cases are analyzed: rst a system without anisotropy and without the inclusion of the Oersted eld, in the second case an anisotropy term is considered and in the third case, again a system without anisotropy, but with the inclusion of Oersted eld. All these analisys are done in a macrospin approximation. Finally, a microspin approach including Oersted eld. In the rst three cases, it is possible to obtain analytical results and simulate these results. Reversal time and stable precession frequency values are estimated.
16

Estudo do efeito de transferência de spin

Accioly, Artur Difini January 2011 (has links)
A ideia de transferência de spin, como forma de controle da magnetização, foi introduzida independentemente por Slonczewski e por Berger em 1996. Desde então, esse efeito tem sido alvo de inúmeras pesquisas, em especial pela possibilidade de aplicações em memorias magnéticas não voláteis e em osciladores de alta frequência. Devido _a complexidade do problema, a grande maioria das pesquisas teóricas sobre o assunto _e baseada em resultados numéricos. Porém, esses métodos podem dificultar a visualização das influências individuais dos diferentes termos envolvidos. Para isso, seria melhor a utilização de métodos analíticos, o que nos motiva a buscar por esses resultados. Nesse trabalho, apresentamos uma revisão sobre a teoria básica do efeito de transferência de spin e da dinâmica da magnetização. São revistas as principais equações que descrevem o comportamento da magnetização, as equações de Landau-Lifshitz e de Landau-Lifshitz-Gilbert, e comparadas suas componentes quando da inclusão do termo de transferência, analisando a melhor forma de incluir esse termo. É destacada a contribuição dada pelo termo de transferência na frequência de precessão da magnetização, que aparece ao se utilizar a equação de Landau-Lifshitz-Gilbert. Após essa revisão dos conceitos base, são buscadas soluções analíticas para a dinâmica da magnetização da camada livre de um sistema nanopilar em tricamada. Quatro casos são analisados: primeiro um sistema sem anisotropias e sem a inclusão do campo de Oersted, no segundo caso é incluído um termo de anisotropia e no terceiro novamente um sistema sem anisotropias, mas com a inclusão do campo de Oersted. Todas essas análises são feitas em uma aproximação de macrospin. Por último, uma aproximação de microspin com campo de Oersted. Nos três primeiros casos, é possível obter resultados analíticos e simular os resultados. São estimados o tempo de reversão e a frequência de precessão estável. / The idea of spin transfer as a way to control magnetization was introduced independently by Slonczewski and Berger in 1996. Since then, this e ect has been the subject of numerous studies, especially for potential applications in nonvolatile magnetic memories and high-frequency oscillators. Due to the complexity of the problem, the vast majority of theoretical research on this subject is based on numerical results. However, these methods might not display the in uences of individual terms involved. For this, it would be better to use analytical methods, which motivates us to search for these results. In this paper, we review the basic theory of spin transfer e ect and of magnetization dynamics. We review the main equations that describe the behavior of magnetization, the Landau-Lifshitz and Landau-Lifshitz-Gilbert equations, and compare its components when inserting the spin torque term, analyzing the best way to include this term. The contribution of spin transfer on magnetization precession frequency, which appears when using the Landau-Lifshitz- Gilbert equation, is emphasized. After this review of basic concepts, analytical solutions for magnetization dynamics of the free layer in a tri-layer nanopillar are searched. Four cases are analyzed: rst a system without anisotropy and without the inclusion of the Oersted eld, in the second case an anisotropy term is considered and in the third case, again a system without anisotropy, but with the inclusion of Oersted eld. All these analisys are done in a macrospin approximation. Finally, a microspin approach including Oersted eld. In the rst three cases, it is possible to obtain analytical results and simulate these results. Reversal time and stable precession frequency values are estimated.
17

Estudo do efeito de transferência de spin

Accioly, Artur Difini January 2011 (has links)
A ideia de transferência de spin, como forma de controle da magnetização, foi introduzida independentemente por Slonczewski e por Berger em 1996. Desde então, esse efeito tem sido alvo de inúmeras pesquisas, em especial pela possibilidade de aplicações em memorias magnéticas não voláteis e em osciladores de alta frequência. Devido _a complexidade do problema, a grande maioria das pesquisas teóricas sobre o assunto _e baseada em resultados numéricos. Porém, esses métodos podem dificultar a visualização das influências individuais dos diferentes termos envolvidos. Para isso, seria melhor a utilização de métodos analíticos, o que nos motiva a buscar por esses resultados. Nesse trabalho, apresentamos uma revisão sobre a teoria básica do efeito de transferência de spin e da dinâmica da magnetização. São revistas as principais equações que descrevem o comportamento da magnetização, as equações de Landau-Lifshitz e de Landau-Lifshitz-Gilbert, e comparadas suas componentes quando da inclusão do termo de transferência, analisando a melhor forma de incluir esse termo. É destacada a contribuição dada pelo termo de transferência na frequência de precessão da magnetização, que aparece ao se utilizar a equação de Landau-Lifshitz-Gilbert. Após essa revisão dos conceitos base, são buscadas soluções analíticas para a dinâmica da magnetização da camada livre de um sistema nanopilar em tricamada. Quatro casos são analisados: primeiro um sistema sem anisotropias e sem a inclusão do campo de Oersted, no segundo caso é incluído um termo de anisotropia e no terceiro novamente um sistema sem anisotropias, mas com a inclusão do campo de Oersted. Todas essas análises são feitas em uma aproximação de macrospin. Por último, uma aproximação de microspin com campo de Oersted. Nos três primeiros casos, é possível obter resultados analíticos e simular os resultados. São estimados o tempo de reversão e a frequência de precessão estável. / The idea of spin transfer as a way to control magnetization was introduced independently by Slonczewski and Berger in 1996. Since then, this e ect has been the subject of numerous studies, especially for potential applications in nonvolatile magnetic memories and high-frequency oscillators. Due to the complexity of the problem, the vast majority of theoretical research on this subject is based on numerical results. However, these methods might not display the in uences of individual terms involved. For this, it would be better to use analytical methods, which motivates us to search for these results. In this paper, we review the basic theory of spin transfer e ect and of magnetization dynamics. We review the main equations that describe the behavior of magnetization, the Landau-Lifshitz and Landau-Lifshitz-Gilbert equations, and compare its components when inserting the spin torque term, analyzing the best way to include this term. The contribution of spin transfer on magnetization precession frequency, which appears when using the Landau-Lifshitz- Gilbert equation, is emphasized. After this review of basic concepts, analytical solutions for magnetization dynamics of the free layer in a tri-layer nanopillar are searched. Four cases are analyzed: rst a system without anisotropy and without the inclusion of the Oersted eld, in the second case an anisotropy term is considered and in the third case, again a system without anisotropy, but with the inclusion of Oersted eld. All these analisys are done in a macrospin approximation. Finally, a microspin approach including Oersted eld. In the rst three cases, it is possible to obtain analytical results and simulate these results. Reversal time and stable precession frequency values are estimated.
18

Magnetization and elastic dynamics in nanostructured metamaterials

Mansurova, Maria 19 February 2016 (has links)
In dieser Arbeit wurde magnetische und elastische Dynamik in nanostrukturierten künstlichen Materialien mit Hilfe eines optischen, zeitaufgelösten Pumpprobe Messaufbaus untersucht. Die Absorption der ultraschnellen Laserpulse erzeugt einen Wärmegradienten auf einer Zeitskala von Pikosekunden. Dieser induziert kohärente dynamische Prozesse, welche mit einem zweiten, zeitverzögerten Puls beobachtet werden. In einem zweidimensionalen magnonischen Kristall, bestehend aus einem submikrometer großen Antidotgitter auf einer ferromagnetischen CoFeB Schicht, können Spinwellenmoden beobachtet werden, die eine schwache Frequenzabhängigkeit vom externen magnetischen Feld aufweisen. Dies lässt vermuten, dass Spinwellen in der Nähe von Inhomogenitäten des internen Feldes lokalisieren. Elastische Dynamik auf denselben Strukturen zeigt Frequenzen proportional zu charakteristischen Strukturgrößen (Antidotabstand und Antidotgröße), was auf die Anregung von Spannungswellen auf der Oberfläche hindeutet. Auf CoFeB/MgO Schichtstapeln mit ähnlicher akustischer Impedanz, können sowohl Oberflächenwellen als auch Wellen im Volumen in guter Übereinstimmungmit der Theorie beobachtet werden. Anregung der elastischen Dynamik in Reflektions- und Transmissionsgeometrie zeigen, dass durch das Brechen der Periodizität des Schichtstapels die Amplitude der hochfrequenten Oberflächenwelle effektiv unterdrückt wird. Außerdem sind im W/PC Schichtstapeln mit hohem akustischem Versatz innere Wellen unterdrückt.
19

Microwave Frequency Stability and Spin Wave Mode Structure in Nano-Contact Spin Torque Oscillators

Eklund, Anders January 2016 (has links)
The nano-contact spin torque oscillator (NC-STO) is an emerging device for highly tunable microwave frequency generation in the range from 0.1 GHz to above 65 GHz with an on-chip footprint on the scale of a few μm. The frequency is inherent to the magnetic material of the NC-STO and is excited by an electrical DC current by means of the spin torque transfer effect. Although the general operation is well understood, more detailed aspects such as a generally nonlinear frequency versus current relationship, mode-jumping and high device-to-device variability represent open questions. Further application-oriented questions are related to increasing the electrical output power through synchronization of multiple NC-STOs and integration with CMOS integrated circuits. This thesis consists of an experimental part and a simulation part. Experimentally, for the frequency stability it is found that the slow but strong 1/f-type frequency fluctuations are related to the degree of nonlinearity and the presence of perturbing, unexcited modes. It is also found that the NC-STO can exhibit up to three propagating spin wave oscillation modes with different frequencies and can randomly jump between them. These findings were made possible through the development of a specialized microwave time-domain measurement circuit. Another instrumental achievement was made with synchrotron X-rays, where we image dynamically the magnetic internals of an operating NC-STO device and reveal a spin wave mode structure with a complexity significantly higher than the one predicted by the present theory. In the simulations, we are able to reproduce the nonlinear current dependence by including spin wave-reflecting barriers in the nm-thick metallic, magnetic free layer. A physical model for the barriers is introduced in the form of metal grain boundaries with reduced magnetic exchange coupling. Using the experimentally measured average grain size of 30 nm, the spin wave mode structure resulting from the grain model is able to reproduce the experimentally found device nonlinearity and high device-to-device variability. In conclusion, the results point out microscopic material grains in the metallic free layer as the reason behind the nonlinear frequency versus current behavior and multiple propagating spin wave modes and thereby as a source of device-to-device variability and frequency instability. / Dagens snabba utveckling inom informationsteknik drivs på av ständigt växande informationsmängder och deras samhällsanvändning inom allt från resursoptimering till underhållning. Utvecklingen möjliggörs till stor del hårdvarumässigt av miniatyrisering och integrering av elektroniska komponenter samt trådlös kommunikation med allt större bandbredd och högre överföringshastighet. Det senare uppnås främst genom utnyttjande av högre radiofrekvenser i teknologiskt tidigare oåtkomliga delar av spektrumet. Frekvensutnyttjandet har det senaste årtiondet ökat markant i mikrovågsområdet med typiska frekvenser runt 2.4 GHz och 5.2-5.8 GHz. I den spinntroniska oscillatorn (STO:n) möjliggörs frekvensgenerering i det breda området från 0.1 GHz upp till över 65 GHz av en komponent med mikrometerstorlek som kan integreras direkt i CMOS-mikrochip. Till skillnad från i konventionella radiokretsar med oscillatorer konstruerade av integrerade transistorer och spolar, genereras mikrovågsfrekvensen direkt i STO:ns magnetiska material och omvandlas därefter till en elektrisk signal genom komponentens magnetoresistans. Dessa materialegenskaper möjliggör ett tillgängligt frekvensband med extrem bredd i en och samma STO, som därtill kan frekvensmoduleras direkt genom sin styrström och på så sätt förenklar konstruktionen av sändarsystem. STO:ns icke-linjära egenskaper kan potentiellt också användas för att i en och samma komponent blanda ned mottagna mikrovågssignaler och på så sätt förenkla konstruktionen även av mikrovågsmottagare. STO:ns signalegenskaper bestäms av det magnetiska materialets fysik i form av magnetiseringsdynamik driven av elektriskt genererade spinnströmmar. I denna avhandling studeras denna dynamik experimentellt med särskilt fokus på frekvensstabiliteten i den hittills mest stabila STO-typen; nanokontakts-STO:n. Genom mätningar i tidsdomän av STO:ns elektriska signaler runt 25 GHz har frekvensstabiliteten funnits hänga samman med den typ av icke-linjärt beteende som också funnits vara utmärkande för tillverkningsvariationen i komponenterna. Mikroskopiska undersökningar av materialet visar att en trolig källa till denna variation är den magnetiska metallens uppbyggnad i form av korn i storleksordningen 30 nm, och datorsimuleringar av en sådan materialstruktur har visats kunna reproducera de experimentella resultaten. Därtill har en metod utvecklats för att med röntgenstrålning direkt mäta de små, magnetiska mikrovågsrörelserna i materialet. Denna röntgenteknik möjliggör detaljerade experimentella studier av magnetiseringsdynamiken och kan användas för att verifiera och vidareutveckla den existerande teorin för mikrovågsspinntronik. Sammantaget förs STO-teknologin genom denna studie ett steg närmare sina tänkbara samhällsbreda tillämpningar inom snabb, trådlös kommunikation för massproducerade produkter med integrerad sensor- och datorfunktionalitet. / <p>QC 20160620</p>
20

Element-resolved ultrafast magnetization dynamics in ferromagnetic alloys and multilayers

Eschenlohr, Andrea January 2012 (has links)
The microscopic origin of ultrafast demagnetization, i.e. the quenching of the magnetization of a ferromagnetic metal on a sub-picosecond timescale after laser excitation, is still only incompletely understood, despite a large body of experimental and theoretical work performed since the discovery of the effect more than 15 years ago. Time- and element-resolved x-ray magnetic circular dichroism measurements can provide insight into the microscopic processes behind ultrafast demagnetization as well as its dependence on materials properties. Using the BESSY II Femtoslicing facility, a storage ring based source of 100 fs short soft x-ray pulses, ultrafast magnetization dynamics of ferromagnetic NiFe and GdTb alloys as well as a Au/Ni layered structure were investigated in laser pump – x-ray probe experiments. After laser excitation, the constituents of Ni50Fe50 and Ni80Fe20 exhibit distinctly different time constants of demagnetization, leading to decoupled dynamics, despite the strong exchange interaction that couples the Ni and Fe sublattices under equilibrium conditions. Furthermore, the time constants of demagnetization for Ni and Fe are different in Ni50Fe50 and Ni80Fe20, and also different from the values for the respective pure elements. These variations are explained by taking the magnetic moments of the Ni and Fe sublattices, which are changed from the pure element values due to alloying, as well as the strength of the intersublattice exchange interaction into account. GdTb exhibits demagnetization in two steps, typical for rare earths. The time constant of the second, slower magnetization decay was previously linked to the strength of spin-lattice coupling in pure Gd and Tb, with the stronger, direct spin-lattice coupling in Tb leading to a faster demagnetization. In GdTb, the demagnetization of Gd follows Tb on all timescales. This is due to the opening of an additional channel for the dissipation of spin angular momentum to the lattice, since Gd magnetic moments in the alloy are coupled via indirect exchange interaction to neighboring Tb magnetic moments, which are in turn strongly coupled to the lattice. Time-resolved measurements of the ultrafast demagnetization of a Ni layer buried under a Au cap layer, thick enough to absorb nearly all of the incident pump laser light, showed a somewhat slower but still sub-picosecond demagnetization of the buried Ni layer in Au/Ni compared to a Ni reference sample. Supported by simulations, I conclude that demagnetization can thus be induced by transport of hot electrons excited in the Au layer into the Ni layer, without the need for direct interaction between photons and spins. / Der mikroskopische Ursprung der ultraschnellen Entmagnetisierung, d.h. des Rückgangs der Magnetisierung eines ferromagnetischen Metalls innerhalb einer Pikosekunde nach Laseranregung, ist bisher nur unvollständig verstanden, trotz umfangreicher experimenteller und theoretischer Arbeiten, die seit der Entdeckung des Effekts vor mehr als 15 Jahren durchgeführt wurden. Zeit- und elementaufgelöster Röntgenzirkulardichroismus kann Einblick in die mikroskopischen Prozesse hinter der ultraschnellen Entmagnetisierung sowie deren Materialabhängigkeit gewähren. Am BESSY II Femtoslicing, einer speicherringbasierten Quelle für 100 fs kurze Röntgenpulse, wurde ultraschnelle Magnetisierungsdynamik von ferromagnetischen NiFe- und GdTb-Legierungen sowie einer Au/Ni-Schichtstruktur in Anregungs-Abfrage-Experimenten untersucht. Nach Laseranregung zeigen die Konstituenten von Ni50Fe50 und Ni80Fe20 deutlich unterscheidbares Verhalten und damit entkoppelte Dynamik, trotz starker Austauschkopplung der Ni- und Fe-Untergitter im Gleichgewichtszustand. Weiterhin variieren die Werte der Zeitkonstanten der Entmagnetisierung von Ni und Fe für Ni50Fe50 und Ni80Fe20, und auch für die jeweiligen reinen Elemente. Diese Unterschiede werden durch die magnetischen Momente der Untergitter erklärt, die sich in den Legierungen gegenüber den reinen Elementen ändern, sowie durch die Stärke der Austauschkopplung zwischen den Untergittern. GdTb zeigt Entmagnetisierung in zwei Stufen, was typisch für Seltene Erden ist. Die Zeitkonstante der langsameren zweiten Stufe wurde kürzlich mit der Stärke der Spin-Gitter-Kopplung in reinem Gd und Tb in Verbindung gebracht, wobei die stärkere, direkte Spin-Gitter-Kopplung in Tb zu schnellerer Entmagnetisierung führt. In GdTb folgt die Entmagnetisierung von Gd auf allen Zeitskalen der von Tb. Dies beruht auf einer verstärkten Kopplung der magnetischen Momente von Gd an das Gitter, über die indirekte Austauschkopplung an die Tb-Momente. Dadurch kann Spindrehimpuls schneller an das Gitter abfließen. Zeitaufgelöste Messungen der Entmagnetisierung einer Ni-Schicht unter einer Au-Deckschicht, deren Dicke ausreichend ist um den anregenden Laserpuls praktisch vollständig zu absorbieren, zeigen eine leicht verzögerte aber trotzdem ultraschnelle Entmagnetisierung im Vergleich mit einer Ni-Referenzprobe. Unterstützt durch Simulationen zeigt sich, dass Entmagnetisierung durch den Transport heißer Elektronen von der Au-Deckschicht in die Ni-Schicht ausgelöst wird, ohne dass direkte Wechselwirkung zwischen Photonen und Spins notwendig ist.

Page generated in 0.0804 seconds