• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 12
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanical properties of body-centred cubic nanopillars

Yilmaz, Halil January 2018 (has links)
Understanding the mechanical properties and deformation characteristics of nanoscale metallic nanopillars and wires is a significant concern for designing reliable small devices that must resist loads in service. This thesis aims to extend understanding of the size dependent behaviour of nanopillars and wires in compression and tension by investigating their mechanical properties and deformation characteristics. Single crystal bcc pillars were fabricated by focussed ion beam (FIB) machining from Fe, Nb, V, Ta, Mo, W and Cr, as well as the ferrite (bcc) and austenite (fcc) components of a duplex stainless steel (DSS). These were tested in compression over a range of test temperatures from 193 K to 393 K using various types of nanomechanical devices. The effect of sample size (pillar diameter) on the strength was investigated and found to increase with decreasing pillar size. In bcc metals, the yield or flow stress, 􀀂􀀖, is inversely proportional with some power of the pillar diameter, d. In bcc metals tested, the power-law exponent, n, were found in the range of between -0.23 to -0.63, showing a less pronounced size effect than found for fcc pillars. The power-law exponent for bcc pillar deformation is also temperature dependent and was found to scale with the ratio of test temperature, Ttest to the critical temperature for screw dislocation mobility, Tc, of the bcc metal (T*= Ttest / Tc). It is notable that the size effect exponent weakens (approaches 0) as T* decreases. However, when the experiments are carried out at temperatures close to or just above Tc, the power-law exponents approaches the value reported in the literature for a range of fcc metals (-1 < n < -0.6). The variation in the power-law exponent observed for bcc metals can be explained by the change in mobility of thermally activated screw dislocations. Their mobility can be modelled by a threshold or lattice friction stress. If this friction stress is introduced into the empirical equation that relates the strength of fcc metal pillars to their diameter, a strong correlation between size effect exponent, the normalised test temperature (T*) and friction stress is obtained. It was found that the friction stress values (Fe, Nb and V) increase as Ttest decreases from 296 to 193 K. When the pillar diameter decreases, the friction stress would be more easily overcome due to the increase in surface-to-volume ratio. The contribution of lattice friction stress on the strength is higher at larger pillars than those for nanopillars. Thus, the divergence between best fit lines has become more apparent at micron-sized pillars, resulting in weaker size effects. Furthermore, the transition in deformation morphology from localized to wavy deformation was only found in Fe pillars, as the Ttest decreased from 296 to 193 K, further revealing that temperature has also strong influence on deformation behaviours of bcc pillars.
2

Estudo do efeito de transferência de spin

Accioly, Artur Difini January 2011 (has links)
A ideia de transferência de spin, como forma de controle da magnetização, foi introduzida independentemente por Slonczewski e por Berger em 1996. Desde então, esse efeito tem sido alvo de inúmeras pesquisas, em especial pela possibilidade de aplicações em memorias magnéticas não voláteis e em osciladores de alta frequência. Devido _a complexidade do problema, a grande maioria das pesquisas teóricas sobre o assunto _e baseada em resultados numéricos. Porém, esses métodos podem dificultar a visualização das influências individuais dos diferentes termos envolvidos. Para isso, seria melhor a utilização de métodos analíticos, o que nos motiva a buscar por esses resultados. Nesse trabalho, apresentamos uma revisão sobre a teoria básica do efeito de transferência de spin e da dinâmica da magnetização. São revistas as principais equações que descrevem o comportamento da magnetização, as equações de Landau-Lifshitz e de Landau-Lifshitz-Gilbert, e comparadas suas componentes quando da inclusão do termo de transferência, analisando a melhor forma de incluir esse termo. É destacada a contribuição dada pelo termo de transferência na frequência de precessão da magnetização, que aparece ao se utilizar a equação de Landau-Lifshitz-Gilbert. Após essa revisão dos conceitos base, são buscadas soluções analíticas para a dinâmica da magnetização da camada livre de um sistema nanopilar em tricamada. Quatro casos são analisados: primeiro um sistema sem anisotropias e sem a inclusão do campo de Oersted, no segundo caso é incluído um termo de anisotropia e no terceiro novamente um sistema sem anisotropias, mas com a inclusão do campo de Oersted. Todas essas análises são feitas em uma aproximação de macrospin. Por último, uma aproximação de microspin com campo de Oersted. Nos três primeiros casos, é possível obter resultados analíticos e simular os resultados. São estimados o tempo de reversão e a frequência de precessão estável. / The idea of spin transfer as a way to control magnetization was introduced independently by Slonczewski and Berger in 1996. Since then, this e ect has been the subject of numerous studies, especially for potential applications in nonvolatile magnetic memories and high-frequency oscillators. Due to the complexity of the problem, the vast majority of theoretical research on this subject is based on numerical results. However, these methods might not display the in uences of individual terms involved. For this, it would be better to use analytical methods, which motivates us to search for these results. In this paper, we review the basic theory of spin transfer e ect and of magnetization dynamics. We review the main equations that describe the behavior of magnetization, the Landau-Lifshitz and Landau-Lifshitz-Gilbert equations, and compare its components when inserting the spin torque term, analyzing the best way to include this term. The contribution of spin transfer on magnetization precession frequency, which appears when using the Landau-Lifshitz- Gilbert equation, is emphasized. After this review of basic concepts, analytical solutions for magnetization dynamics of the free layer in a tri-layer nanopillar are searched. Four cases are analyzed: rst a system without anisotropy and without the inclusion of the Oersted eld, in the second case an anisotropy term is considered and in the third case, again a system without anisotropy, but with the inclusion of Oersted eld. All these analisys are done in a macrospin approximation. Finally, a microspin approach including Oersted eld. In the rst three cases, it is possible to obtain analytical results and simulate these results. Reversal time and stable precession frequency values are estimated.
3

Estudo do efeito de transferência de spin

Accioly, Artur Difini January 2011 (has links)
A ideia de transferência de spin, como forma de controle da magnetização, foi introduzida independentemente por Slonczewski e por Berger em 1996. Desde então, esse efeito tem sido alvo de inúmeras pesquisas, em especial pela possibilidade de aplicações em memorias magnéticas não voláteis e em osciladores de alta frequência. Devido _a complexidade do problema, a grande maioria das pesquisas teóricas sobre o assunto _e baseada em resultados numéricos. Porém, esses métodos podem dificultar a visualização das influências individuais dos diferentes termos envolvidos. Para isso, seria melhor a utilização de métodos analíticos, o que nos motiva a buscar por esses resultados. Nesse trabalho, apresentamos uma revisão sobre a teoria básica do efeito de transferência de spin e da dinâmica da magnetização. São revistas as principais equações que descrevem o comportamento da magnetização, as equações de Landau-Lifshitz e de Landau-Lifshitz-Gilbert, e comparadas suas componentes quando da inclusão do termo de transferência, analisando a melhor forma de incluir esse termo. É destacada a contribuição dada pelo termo de transferência na frequência de precessão da magnetização, que aparece ao se utilizar a equação de Landau-Lifshitz-Gilbert. Após essa revisão dos conceitos base, são buscadas soluções analíticas para a dinâmica da magnetização da camada livre de um sistema nanopilar em tricamada. Quatro casos são analisados: primeiro um sistema sem anisotropias e sem a inclusão do campo de Oersted, no segundo caso é incluído um termo de anisotropia e no terceiro novamente um sistema sem anisotropias, mas com a inclusão do campo de Oersted. Todas essas análises são feitas em uma aproximação de macrospin. Por último, uma aproximação de microspin com campo de Oersted. Nos três primeiros casos, é possível obter resultados analíticos e simular os resultados. São estimados o tempo de reversão e a frequência de precessão estável. / The idea of spin transfer as a way to control magnetization was introduced independently by Slonczewski and Berger in 1996. Since then, this e ect has been the subject of numerous studies, especially for potential applications in nonvolatile magnetic memories and high-frequency oscillators. Due to the complexity of the problem, the vast majority of theoretical research on this subject is based on numerical results. However, these methods might not display the in uences of individual terms involved. For this, it would be better to use analytical methods, which motivates us to search for these results. In this paper, we review the basic theory of spin transfer e ect and of magnetization dynamics. We review the main equations that describe the behavior of magnetization, the Landau-Lifshitz and Landau-Lifshitz-Gilbert equations, and compare its components when inserting the spin torque term, analyzing the best way to include this term. The contribution of spin transfer on magnetization precession frequency, which appears when using the Landau-Lifshitz- Gilbert equation, is emphasized. After this review of basic concepts, analytical solutions for magnetization dynamics of the free layer in a tri-layer nanopillar are searched. Four cases are analyzed: rst a system without anisotropy and without the inclusion of the Oersted eld, in the second case an anisotropy term is considered and in the third case, again a system without anisotropy, but with the inclusion of Oersted eld. All these analisys are done in a macrospin approximation. Finally, a microspin approach including Oersted eld. In the rst three cases, it is possible to obtain analytical results and simulate these results. Reversal time and stable precession frequency values are estimated.
4

Estudo do efeito de transferência de spin

Accioly, Artur Difini January 2011 (has links)
A ideia de transferência de spin, como forma de controle da magnetização, foi introduzida independentemente por Slonczewski e por Berger em 1996. Desde então, esse efeito tem sido alvo de inúmeras pesquisas, em especial pela possibilidade de aplicações em memorias magnéticas não voláteis e em osciladores de alta frequência. Devido _a complexidade do problema, a grande maioria das pesquisas teóricas sobre o assunto _e baseada em resultados numéricos. Porém, esses métodos podem dificultar a visualização das influências individuais dos diferentes termos envolvidos. Para isso, seria melhor a utilização de métodos analíticos, o que nos motiva a buscar por esses resultados. Nesse trabalho, apresentamos uma revisão sobre a teoria básica do efeito de transferência de spin e da dinâmica da magnetização. São revistas as principais equações que descrevem o comportamento da magnetização, as equações de Landau-Lifshitz e de Landau-Lifshitz-Gilbert, e comparadas suas componentes quando da inclusão do termo de transferência, analisando a melhor forma de incluir esse termo. É destacada a contribuição dada pelo termo de transferência na frequência de precessão da magnetização, que aparece ao se utilizar a equação de Landau-Lifshitz-Gilbert. Após essa revisão dos conceitos base, são buscadas soluções analíticas para a dinâmica da magnetização da camada livre de um sistema nanopilar em tricamada. Quatro casos são analisados: primeiro um sistema sem anisotropias e sem a inclusão do campo de Oersted, no segundo caso é incluído um termo de anisotropia e no terceiro novamente um sistema sem anisotropias, mas com a inclusão do campo de Oersted. Todas essas análises são feitas em uma aproximação de macrospin. Por último, uma aproximação de microspin com campo de Oersted. Nos três primeiros casos, é possível obter resultados analíticos e simular os resultados. São estimados o tempo de reversão e a frequência de precessão estável. / The idea of spin transfer as a way to control magnetization was introduced independently by Slonczewski and Berger in 1996. Since then, this e ect has been the subject of numerous studies, especially for potential applications in nonvolatile magnetic memories and high-frequency oscillators. Due to the complexity of the problem, the vast majority of theoretical research on this subject is based on numerical results. However, these methods might not display the in uences of individual terms involved. For this, it would be better to use analytical methods, which motivates us to search for these results. In this paper, we review the basic theory of spin transfer e ect and of magnetization dynamics. We review the main equations that describe the behavior of magnetization, the Landau-Lifshitz and Landau-Lifshitz-Gilbert equations, and compare its components when inserting the spin torque term, analyzing the best way to include this term. The contribution of spin transfer on magnetization precession frequency, which appears when using the Landau-Lifshitz- Gilbert equation, is emphasized. After this review of basic concepts, analytical solutions for magnetization dynamics of the free layer in a tri-layer nanopillar are searched. Four cases are analyzed: rst a system without anisotropy and without the inclusion of the Oersted eld, in the second case an anisotropy term is considered and in the third case, again a system without anisotropy, but with the inclusion of Oersted eld. All these analisys are done in a macrospin approximation. Finally, a microspin approach including Oersted eld. In the rst three cases, it is possible to obtain analytical results and simulate these results. Reversal time and stable precession frequency values are estimated.
5

Präparation und Charakterisierung von TMR-Nanosäulen / Preparation and characterisation of TMR-Nanopillars

Höwler, Marcel 27 August 2012 (has links) (PDF)
Diese Arbeit befasst sich mit der Nanostrukturierung von magnetischen Schichtsystemen mit Tunnelmagnetowiderstandseffekt (TMR-Effekt), welche in der Form von Nanosäulen in magnetoresistiven Speichern (MRAM) eingesetzt werden. Solche Nanosäulen können zukünftig ebenfalls als Nanoemitter von Mikrowellensignalen eine Rolle spielen. Dabei wird von der Auswahl eines geeigneten TMR-Schichtsystems mit einer MgO-Tunnelbarriere über die Präparation der Nanosäulen mit Seitenisolierung bis hin zum Aufbringen der elektrischen Zuleitungen eine komplette Prozesskette entwickelt und optimiert. Die Strukturen werden mittels optischer Lithographie und Elektronenstrahllithographie definiert, die anschließende Strukturübertragung erfolgt durch Ionenstrahlätzen (teilweise reaktiv) sowie durch Lift-off. Rückmeldung über Erfolg oder Probleme bei der Strukturierung geben Transmissionselektronenmikroskopie (teilweise mit Zielpräparation per Ionenfeinstrahl, FIB), Rasterelektronenmikroskopie sowie die Lichtmikroskopie. Es können so TMR-Nanosäulen mit minimalen Abmessungen von bis zu 69 nm x 71 nm hergestellt werden, von denen Nanosäulen mit Abmessungen von 65 nm x 87 nm grundlegend magneto-elektrisch charakterisiert worden sind. Dies umfasst die Bestimmung des TMR-Effektes und des Widerstandes der Tunnelbarriere (RA-Produkt). Weiterhin wurde das Verhalten der magnetischen Schichten bei größeren Magnetfeldern bis +-200mT sowie das Umschaltverhalten der magnetisch freien Schicht bei verändertem Winkel zwischen magnetischer Vorzugsachse des TMR-Elementes und dem äußeren Magnetfeld untersucht. Der Nachweis des Spin-Transfer-Torque Effektes an den präparierten TMR-Nanosäulen ist im Rahmen dieser Arbeit nicht gelungen, was mit dem zu hohen elektrischen Widerstand der verwendeten Tunnelbarriere erklärt werden kann. Mit dünneren Barrieren konnte der Widerstand gesenkt werden, allerdings führt ein Stromfluss durch diese Barrieren schnell zur Degradation der Barrieren. Weiterführende Arbeiten sollten das Ziel haben, niederohmige und gleichzeitig elektrisch belastbare Tunnelbarrieren in einem entsprechenden TMR-Schichtsystem abzuscheiden. Eine erste Auswahl an Ansatzpunkten dafür aus der Literatur wird im Ausblick gegeben. / This thesis deals with the fabrication of nanopillars with tunnel magnetoresistance effect (TMR-effect), which are used in magnetoresistive memory (MRAM) and may be used as nanooscillators for future near field communication devices. Starting with the selection of a suitable TMR-layer stack with MgO-tunnel barrier, the whole process chain covering the fabrication of the nanopillars, sidewall isolation and preparation of the supply lines on top is developed and optimised. The structures are defined by optical and electron beam lithography, the subsequent patterning is done by ion beam etching (partially reactive) and lift-off. Techniques providing feedback on the nanofabrication are transmission electron microscopy (partially with target preparation by focused ion beam, FIB), scanning electron microscopy and optical microscopy. In this way nanopillars with minimal dimensions reaching 69 nm x 71 nm could be fabricated, of which nanopillars with a size of 65 nm x 87 nm were characterized fundamentally with respect to their magnetic and electric properties. This covers the determination of the TMR-effect and the resistance of the tunnel barrier (RA-product). In addition, the behaviour of the magnetic layers under higher magnetic fields (up to +-200mT) and the switching behaviour of the free layer at different angles between the easy axis of the TMR-element and the external magnetic field were investigated. The spin transfer torque effect could not be detected in the fabricated nanopillars due to the high electrical resistance of the tunnel barriers which were used. The resistance could be lowered by using thinner barriers, but this led to a quick degradation of the barrier when a current was applied. Continuative work should focus on the preparation of tunnel barriers in an appropriate TMR-stack being low resistive and electrically robust at the same time. A first selection of concepts and ideas from the literature for this task is given in the outlook.
6

Präparation und Charakterisierung von TMR-Nanosäulen

Höwler, Marcel 24 July 2012 (has links)
Diese Arbeit befasst sich mit der Nanostrukturierung von magnetischen Schichtsystemen mit Tunnelmagnetowiderstandseffekt (TMR-Effekt), welche in der Form von Nanosäulen in magnetoresistiven Speichern (MRAM) eingesetzt werden. Solche Nanosäulen können zukünftig ebenfalls als Nanoemitter von Mikrowellensignalen eine Rolle spielen. Dabei wird von der Auswahl eines geeigneten TMR-Schichtsystems mit einer MgO-Tunnelbarriere über die Präparation der Nanosäulen mit Seitenisolierung bis hin zum Aufbringen der elektrischen Zuleitungen eine komplette Prozesskette entwickelt und optimiert. Die Strukturen werden mittels optischer Lithographie und Elektronenstrahllithographie definiert, die anschließende Strukturübertragung erfolgt durch Ionenstrahlätzen (teilweise reaktiv) sowie durch Lift-off. Rückmeldung über Erfolg oder Probleme bei der Strukturierung geben Transmissionselektronenmikroskopie (teilweise mit Zielpräparation per Ionenfeinstrahl, FIB), Rasterelektronenmikroskopie sowie die Lichtmikroskopie. Es können so TMR-Nanosäulen mit minimalen Abmessungen von bis zu 69 nm x 71 nm hergestellt werden, von denen Nanosäulen mit Abmessungen von 65 nm x 87 nm grundlegend magneto-elektrisch charakterisiert worden sind. Dies umfasst die Bestimmung des TMR-Effektes und des Widerstandes der Tunnelbarriere (RA-Produkt). Weiterhin wurde das Verhalten der magnetischen Schichten bei größeren Magnetfeldern bis +-200mT sowie das Umschaltverhalten der magnetisch freien Schicht bei verändertem Winkel zwischen magnetischer Vorzugsachse des TMR-Elementes und dem äußeren Magnetfeld untersucht. Der Nachweis des Spin-Transfer-Torque Effektes an den präparierten TMR-Nanosäulen ist im Rahmen dieser Arbeit nicht gelungen, was mit dem zu hohen elektrischen Widerstand der verwendeten Tunnelbarriere erklärt werden kann. Mit dünneren Barrieren konnte der Widerstand gesenkt werden, allerdings führt ein Stromfluss durch diese Barrieren schnell zur Degradation der Barrieren. Weiterführende Arbeiten sollten das Ziel haben, niederohmige und gleichzeitig elektrisch belastbare Tunnelbarrieren in einem entsprechenden TMR-Schichtsystem abzuscheiden. Eine erste Auswahl an Ansatzpunkten dafür aus der Literatur wird im Ausblick gegeben.:Einleitung I Grundlagen 1 Spinelektronik und Magnetowiderstand 1.1 Der Elektronenspin – Grundlage des Magnetismus 1.2 Magnetoresistive Effekte 1.2.1 AnisotroperMagnetowiderstand 1.2.2 Riesenmagnetowiderstand 1.2.3 Tunnelmagnetowiderstand 1.3 Spin-Transfer-Torque 1.4 Anwendungen 1.4.1 Festplattenleseköpfe 1.4.2 Magnetoresistive Random AccessMemory (MRAM) 1.4.3 Nanooszillatoren für drahtlose Kommunikation 2 Grundlagen der Mikro- und Nanostrukturierung 2.1 Belacken 2.2 Belichten 2.2.1 Optische Lithographie 2.2.2 Elektronenstrahllithographie 2.3 Entwickeln 2.4 Strukturübertragung 2.4.1 Die Lift-off Technik 2.4.2 Ätzen 2.5 Entfernen der Lackmaske 2.6 Reinigung 2.6.1 Quellen von Verunreinigungen 2.6.2 Auswirkungen von Verunreinigungen 2.6.3 Entfernung von Verunreinigungen 2.6.4 Spülen und Trocknen der Probenoberfläche 3 Ionenstrahlätzen 3.1 Physikalisches Ätzen – Sputterätzen 3.2 Reaktives Ionenstrahlätzen – RIBE 3.3 Anlagentechnik 3.3.1 Parameter 3.3.2 Homogenität 3.3.3 Endpunktdetektion II Ergebnisse und Diskussion 4 TMR-Schichtsysteme 4.1 Prinzipielle Schichtfolge 4.2 Verwendete TMR-Schichtsysteme 4.3 Rekristallisation von Kupfer 4.4 Formierung der TMR-Schichtsysteme 4.4.1 Antiferromagnetische Kopplung an PtMn 4.4.2 Rekristallisation an der MgO-Barriere 4.5 Anpassung der MgO-Schicht – TMR-Effekt und RA-Produkt 4.6 Magnetische Charakterisierung 5 Probendesign 5.1 Beschreibung der vier lithographischen Ebenen 5.2 Layout für statische und dynamischeMessungen 5.2.1 Geometrie 5.2.2 Anforderungen für die Hochfrequenzmessung 5.3 Layout für Zuverlässigkeitsmessungen 5.3.1 Geometrie 5.3.2 Voraussetzungen für die Funktion 5.4 Chiplayout 5.4.1 Zusatzstrukturen 5.4.2 Anordnung der Elemente 6 Fertigung eines Maskensatzes für die optische Lithographie 6.1 Vorbereitung desMaskenrohlings 6.2 Strukturierung mittels Elektronenstrahllithographie 6.3 Ätzen der Chromschicht 7 Ergebnisse und Diskussion der Probenpräparation 7.1 Definition der Grundelektrode 7.1.1 Freistellen der Grundelektrode 7.1.2 Gratfreiheit der Grundelektrode 7.1.3 Oberflächenqualität nach der Strukturierung 7.2 Präparation der magnetischen Nanosäulen 7.2.1 Aufbringen einer Ätzmaske 7.2.2 Ionenstrahlätzen der TMR-Nanosäule 7.2.3 Abmessungen der präparierten Nanosäulen 7.3 Vertikale Kontaktierung 7.3.1 Seitenwandisolation 7.3.2 Freilegen der Kontakte 7.3.3 Aufbringen der elektrischen Zuleitungen 7.4 Die komplette Prozesskette und Ausbeute 8 Magneto-elektrische Charakterisierung 8.1 Messung des Tunnelmagnetowiderstandes 8.2 Stabilität der magnetischen Konfiguration 8.3 Spin-Transfer-Torque an TMR-Nanosäulen 9 Zusammenfassung und Ausblick Literaturverzeichnis / This thesis deals with the fabrication of nanopillars with tunnel magnetoresistance effect (TMR-effect), which are used in magnetoresistive memory (MRAM) and may be used as nanooscillators for future near field communication devices. Starting with the selection of a suitable TMR-layer stack with MgO-tunnel barrier, the whole process chain covering the fabrication of the nanopillars, sidewall isolation and preparation of the supply lines on top is developed and optimised. The structures are defined by optical and electron beam lithography, the subsequent patterning is done by ion beam etching (partially reactive) and lift-off. Techniques providing feedback on the nanofabrication are transmission electron microscopy (partially with target preparation by focused ion beam, FIB), scanning electron microscopy and optical microscopy. In this way nanopillars with minimal dimensions reaching 69 nm x 71 nm could be fabricated, of which nanopillars with a size of 65 nm x 87 nm were characterized fundamentally with respect to their magnetic and electric properties. This covers the determination of the TMR-effect and the resistance of the tunnel barrier (RA-product). In addition, the behaviour of the magnetic layers under higher magnetic fields (up to +-200mT) and the switching behaviour of the free layer at different angles between the easy axis of the TMR-element and the external magnetic field were investigated. The spin transfer torque effect could not be detected in the fabricated nanopillars due to the high electrical resistance of the tunnel barriers which were used. The resistance could be lowered by using thinner barriers, but this led to a quick degradation of the barrier when a current was applied. Continuative work should focus on the preparation of tunnel barriers in an appropriate TMR-stack being low resistive and electrically robust at the same time. A first selection of concepts and ideas from the literature for this task is given in the outlook.:Einleitung I Grundlagen 1 Spinelektronik und Magnetowiderstand 1.1 Der Elektronenspin – Grundlage des Magnetismus 1.2 Magnetoresistive Effekte 1.2.1 AnisotroperMagnetowiderstand 1.2.2 Riesenmagnetowiderstand 1.2.3 Tunnelmagnetowiderstand 1.3 Spin-Transfer-Torque 1.4 Anwendungen 1.4.1 Festplattenleseköpfe 1.4.2 Magnetoresistive Random AccessMemory (MRAM) 1.4.3 Nanooszillatoren für drahtlose Kommunikation 2 Grundlagen der Mikro- und Nanostrukturierung 2.1 Belacken 2.2 Belichten 2.2.1 Optische Lithographie 2.2.2 Elektronenstrahllithographie 2.3 Entwickeln 2.4 Strukturübertragung 2.4.1 Die Lift-off Technik 2.4.2 Ätzen 2.5 Entfernen der Lackmaske 2.6 Reinigung 2.6.1 Quellen von Verunreinigungen 2.6.2 Auswirkungen von Verunreinigungen 2.6.3 Entfernung von Verunreinigungen 2.6.4 Spülen und Trocknen der Probenoberfläche 3 Ionenstrahlätzen 3.1 Physikalisches Ätzen – Sputterätzen 3.2 Reaktives Ionenstrahlätzen – RIBE 3.3 Anlagentechnik 3.3.1 Parameter 3.3.2 Homogenität 3.3.3 Endpunktdetektion II Ergebnisse und Diskussion 4 TMR-Schichtsysteme 4.1 Prinzipielle Schichtfolge 4.2 Verwendete TMR-Schichtsysteme 4.3 Rekristallisation von Kupfer 4.4 Formierung der TMR-Schichtsysteme 4.4.1 Antiferromagnetische Kopplung an PtMn 4.4.2 Rekristallisation an der MgO-Barriere 4.5 Anpassung der MgO-Schicht – TMR-Effekt und RA-Produkt 4.6 Magnetische Charakterisierung 5 Probendesign 5.1 Beschreibung der vier lithographischen Ebenen 5.2 Layout für statische und dynamischeMessungen 5.2.1 Geometrie 5.2.2 Anforderungen für die Hochfrequenzmessung 5.3 Layout für Zuverlässigkeitsmessungen 5.3.1 Geometrie 5.3.2 Voraussetzungen für die Funktion 5.4 Chiplayout 5.4.1 Zusatzstrukturen 5.4.2 Anordnung der Elemente 6 Fertigung eines Maskensatzes für die optische Lithographie 6.1 Vorbereitung desMaskenrohlings 6.2 Strukturierung mittels Elektronenstrahllithographie 6.3 Ätzen der Chromschicht 7 Ergebnisse und Diskussion der Probenpräparation 7.1 Definition der Grundelektrode 7.1.1 Freistellen der Grundelektrode 7.1.2 Gratfreiheit der Grundelektrode 7.1.3 Oberflächenqualität nach der Strukturierung 7.2 Präparation der magnetischen Nanosäulen 7.2.1 Aufbringen einer Ätzmaske 7.2.2 Ionenstrahlätzen der TMR-Nanosäule 7.2.3 Abmessungen der präparierten Nanosäulen 7.3 Vertikale Kontaktierung 7.3.1 Seitenwandisolation 7.3.2 Freilegen der Kontakte 7.3.3 Aufbringen der elektrischen Zuleitungen 7.4 Die komplette Prozesskette und Ausbeute 8 Magneto-elektrische Charakterisierung 8.1 Messung des Tunnelmagnetowiderstandes 8.2 Stabilität der magnetischen Konfiguration 8.3 Spin-Transfer-Torque an TMR-Nanosäulen 9 Zusammenfassung und Ausblick Literaturverzeichnis
7

Deterministic Silicon Pillar Assemblies and their Photonic Applications

Dev Choudhury, Bikash January 2016 (has links)
It is of paramount importance to our society that the environment, life style, science and amusement flourish together in a balanced way. Some trends in this direction are the increased utilization of renewable energy, like solar photovoltaics; better health care products, for example advanced biosensors; high definition TV or high resolution cameras; and novel scientific tools for better understanding of scientific observations. Advancement of micro and nanotechnologies has directly and positively impacted our stance in these application domains; one example is that of vertical periodic or aperiodic nano or micro pillar assemblies which have attracted significant research and industrial interest in recent years. In particular, Si pillars are very attractive due to the versatility of silicon. There are many potential applications of Si nanopillar/nanowire assemblies ranging from light emission, solar cells, antireflection, sensing and nonlinear optical effects. Compared to bulk, Si pillars or their assemblies have several unique properties, such as high surface to volume ratios, light localization, efficient light guiding, better light absorption, selective band of light propagation etc.      The focus of the thesis is on the fabrication of Si pillar assemblies and hierarchical ZnO nanowires on Si micro structures in top-down and bottom-up approaches and their optical properties and different applications. Here, we have investigated periodic and aperiodic Si nano and micro structure assemblies and their properties, such as light propagation, localization, and selective guiding and light-matter interaction. These properties are exploited in a few important optoelectronic/photonic applications, such as optical biosensors, broad-band anti-reflection, radial-junction solar cells, second harmonic generation and color filters.         We achieved a low average reflectivity of ~ 2.5 % with the periodic Si micropyramid-ZnO NWs hierarchical arrays. Tenfold enhancement in Raman intensity is also observed in these structures compared to planar Si. These Si microstructure-ZnO NW hierarchical structures can enhance the performance and versatility of photovoltaic devices and optical sensors. A convenient top-down fabrication of radial junction nanopillar solar cell using spin-on doping and rapid thermal annealing process is presented. Broad band suppressed reflection, on average 5%, in 300- 850 nm wavelength range and an un-optimized cell efficiency of 6.2 % are achieved. Our method can lead to a simple and low cost process for high efficiency radial junction nanopillar solar cell fabrication.            Silicon dioxide (SiO2) coated silicon nanopillar (NP) arrays are demonstrated for surface sensitive optical biosensing. Bovine serum albumin (BSA)/anti-BSA model system is used for biosensing trials by photo-spectrometry in reflection mode. Best sensitivity in terms of limit of detection of 5.2 ng/ml is determined for our nanopillar biosensor. These results are promising for surface sensitive biosensors and the technology allows integration in the CMOS platform.         Si pillar arrays used for surface second harmonic generation (SHG) experiments are shown to have a strong dependence of the SHG intensity on the pillar geometry. The surface SHG can be suitable for nonlinear silicon photonics, surface/interface studies and optical sensing.         Aperiodic Si nanopillar assemblies in PDMS matrix are demonstrated for efficient color filtering in transmission mode. These assemblies are designed using the ‘‘molecular dynamics-collision between hard sphere’’ algorithm. The designed structure is modeled in a 3D finite difference time domain (FDTD) simulation tool for optimization of color filtering properties. Transverse localization effect of light in our nanopillar color filter structures is investigated theoretically and the results are very promising to achieve image sensors with high pixel densities (~1 µm) and low crosstalk. The developed color filter is applicable as a stand-alone filter for visible color in its present form and can be adapted for displays, imaging, smart windows and aesthetic applications. / <p>QC 20160407</p>
8

Scalable Electrochemical Surface Enhanced Raman Spectroscopy (EC-SERS) for bio-chemical analysis

Xiao, Chuan 06 October 2021 (has links)
Conducting vertical nanopillar arrays can serve as three-dimensional nanostructured electrodes with improved performance for electrical recording and electrochemical sensing in bio-electronics applications. However, vertical nanopillar-array electrodes made of inorganic conducting materials by conventional nanofabrication approach still faces challenges in high manufacturing costs, poor scalability, and limited choice of carrier substrates. Here, we report a new type of conducting nanopillar arrays composed of multi-walled carbon nanotubes (MWCNTs) doped polymeric nanocomposites, which are manufactured over the wafer-scale on both rigid and flexible substrates by direct nanoimprinting of perfluoropolyether nanowell-array templates into uncured MWCNT/polymer mixtures. By controlling the MWCNT ratios and the annealing temperatures during the fabrication process, MWCNT/polymer nanopillar arrays can possess outstanding electrical properties with high DC conductivity (~4 S/m) and low AC electrochemical impedance (~104 Ω at 1000 Hz). Moreover, by electrochemical impedance spectroscopy (EIS) measurements and equivalent circuit modeling-analysis, we can decompose the overall impedance of MWCNT/polymer nanopillar arrays in the electrolyte into multiple bulk and interfacial circuit components, and thus can illustrate their different dependence on the MWCNT ratios and the annealing temperatures. In particular, we find that a proper annealing process can significantly reduce the anomalous ion diffusion impedance and improve the impedance properties of MWCNT/polymer nanopillars in the electrolyte. / Master of Science / Conducting vertical nanopillar arrays can serve as three-dimensional nanostructured electrodes with improved performance for electrical recording and electrochemical sensing in nano-bioelectronics applications. However, vertical nanopillar-array electrodes made of inorganic conducting materials by conventional nanofabrication approach still faces challenges in high manufacturing costs, poor scalability, and limited choice of carrier substrates. Compared to conventional nanofabrication approaches, nanoimprint lithography exhibits unique advantages for low-cost scalable manufacturing of nanostructures on both rigid and flexible substrates. Very few studies, however, have been conducted to achieve the scalable nanoimprinting fabrication of conducting nanopillar arrays made of MWCNT/polymer nanocomposites. Here, I'm reporting a new type of conducting nanopillar arrays composed of multi-walled carbon nanotubes (MWCNTs) doped polymeric nanocomposites, which can be manufactured over the wafer-scale on both rigid and flexible substrates by direct nanoimprinting of the perfluoropolyether nanowell-array template into uncured MWCNT/polymer mixtures. We find that the nanoimprinted conducting nanopillar arrays can possess appealing electrical properties with a high DC conductivity (~4 S/m) and a low AC electrochemical impedance (~104 Ω at 1000 Hz) in the physiologically relevant electrolyte solutions (1X PBS). Furthermore, I've conducted a systematic equivalent circuit modeling analysis of measured EIS results to understand the effects of the MWCNT ratios and the annealing temperatures on the impedance of different bulk and interfacial circuit components for MWCNT/polymer nanopillar arrays in the electrolyte.
9

Spin Transfer Torque-induziertes Schalten von Nanomagneten in lateraler Geometrie bei Raumtemperatur / Spin transfer torque induced switching of nano magnets in lateral spin valve geometry at roomtemperature

Buhl, Matthias 14 April 2014 (has links) (PDF)
Das Schalten und das Auslesen der magnetischen Ausrichtung einzelner winziger magnetischer Informationsspeicher müssen zu wirklich nanoskopischer Dimension entwickelt werden, um mit der Miniaturisierung von modernen, nanoelektronischen Bauteilen Schritt zu halten. Daher sind neue Konzepte, den magnetischen Zustand von Nanostrukturen elektronisch gezielt zu beeinflussen, derzeitig im Mittelpunkt wissenschaftlicher Untersuchungen. Diese Arbeit befasst sich mit dem zuverlässigen Einstellen der Magnetisierung eines rein horizontal kontaktierten, nanoskopischen Magneten, in zwei stabile Zustände. Ein spinpolarisierter Strom wird bei Raumtemperatur in eine Leiterbahn unterhalb des magnetischen Nanopillars injiziert. Spindiffusion durch den Kontakt zwischen der Leiterbahn (Cu) und dem Pillar (CoFe) ruft eine Spin-Akkumulation im Nanopillar hervor, der durch den Spin Transfer Torque-Effekt (STT) vermittelt wird. Bei diesem Prozess verursachen die akkumulierten Elektronenspins ein auftretendes Netto-Moment, das senkrecht auf die Magnetisierungsorientierung des Nanopillars wirkt und so das Schalten ermöglicht. In den STT-induzierten Schaltexperimenten wird der magnetische Zustand des Nanopillars durch eine bildgebendes Messverfahren mittels Rasterröntgentransmissionsmikroskopie (STXM) erfasst. So konnte gezeigt werden, dass sich die Magnetisierung des Pillars auch gegen das Oersted-Feld des Schaltstroms reversibel schalten lässt. / “Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nano electronic components. Therefore, new concepts for controlling the state of nano magnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar by means of Spin Transfer Torque (STT). In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM)” [1]. Therefore it could be demonstrated, to reversibly switch the nanopillar’s magnetic state even against the Oersted field which is induced by the switching current. Furthermore we could show, that magnetization switching is possible by a pure spin current that is diffusively transported beneath the nanopillar.
10

Spin Transfer Torque-induziertes Schalten von Nanomagneten in lateraler Geometrie bei Raumtemperatur

Buhl, Matthias 07 April 2014 (has links)
Das Schalten und das Auslesen der magnetischen Ausrichtung einzelner winziger magnetischer Informationsspeicher müssen zu wirklich nanoskopischer Dimension entwickelt werden, um mit der Miniaturisierung von modernen, nanoelektronischen Bauteilen Schritt zu halten. Daher sind neue Konzepte, den magnetischen Zustand von Nanostrukturen elektronisch gezielt zu beeinflussen, derzeitig im Mittelpunkt wissenschaftlicher Untersuchungen. Diese Arbeit befasst sich mit dem zuverlässigen Einstellen der Magnetisierung eines rein horizontal kontaktierten, nanoskopischen Magneten, in zwei stabile Zustände. Ein spinpolarisierter Strom wird bei Raumtemperatur in eine Leiterbahn unterhalb des magnetischen Nanopillars injiziert. Spindiffusion durch den Kontakt zwischen der Leiterbahn (Cu) und dem Pillar (CoFe) ruft eine Spin-Akkumulation im Nanopillar hervor, der durch den Spin Transfer Torque-Effekt (STT) vermittelt wird. Bei diesem Prozess verursachen die akkumulierten Elektronenspins ein auftretendes Netto-Moment, das senkrecht auf die Magnetisierungsorientierung des Nanopillars wirkt und so das Schalten ermöglicht. In den STT-induzierten Schaltexperimenten wird der magnetische Zustand des Nanopillars durch eine bildgebendes Messverfahren mittels Rasterröntgentransmissionsmikroskopie (STXM) erfasst. So konnte gezeigt werden, dass sich die Magnetisierung des Pillars auch gegen das Oersted-Feld des Schaltstroms reversibel schalten lässt.:Kurzfassung v Abstract vi Danksagung xi 1 Einleitung 1 2 Grundlagen zu Spintronic 5 2.1 Elektronenspins als Grundlage für den Ferromagnetismus . . . . . . 6 2.2 Magnetowiderstandseffekte . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Anisotroper Magnetowiderstandseffekt (AMR) . . . . . . . . 8 2.2.2 Riesenmagnetowidersandseffekt (GMR) . . . . . . . . . . . . 10 2.2.3 Tunnelmagnetowiderstandeffekt (TMR) . . . . . . . . . . . 13 2.3 Spin–Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Spinpolarisation . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Spin-Injektion und Spin-Akkumulation . . . . . . . . . . . . 17 2.3.3 Spinpolarisierter elektrischer Transport . . . . . . . . . . . . 20 2.4 Spin Transfer Torque (STT) . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Geometrien für Spintronic–Bauelemente . . . . . . . . . . . . . . . 30 3 Probenkonzept und Fabrikationsmethoden 35 3.1 Probenkonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 Anforderungen an die CIP–STT-Struktur . . . . . . . . . . . 37 3.1.2 Anforderungen an die ferromagnetischer Materialien . . . . . 38 3.2 Techniken der Probenfabrikation . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Elektronenstrahllithografie (EBL) . . . . . . . . . . . . . . . 41 3.2.2 Positiv- und Negtivlack Prozess . . . . . . . . . . . . . . . . 41 3.2.3 Physikalisches Ätzen . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Probenfabrikation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Experimentelle Methoden 49 4.1 Transmissionsröntgenmikroskopie . . . . . . . . . . . . . . . . . . . 49 4.1.1 Rastertransmissionsröntgenmikroskopie (STXM) . . . . . . . 51 4.1.2 Kontrastmechanismen . . . . . . . . . . . . . . . . . . . . . 53 4.1.3 Röntgenmagnetischer zirkularer Dichroismus (XMCD) . . . 54 4.2 Magneto-optische Kerr–Effekt Mikroskopie . . . . . . . . . . . . . . 57 4.2.1 Kerr–Mikroskop . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.2 Longitudinale Kerr–Geometrie . . . . . . . . . . . . . . . . . 58 5 STT–Experimente und Diskussion 61 5.1 Experimenteller Aufbau . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Eigenschaften der magnetischen Bauelemente . . . . . . . . . . . . . 64 5.2.1 MOKE-Mikroskopie . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.2 Mikromagnetische Simulation . . . . . . . . . . . . . . . . . 67 5.2.3 Analytische Berechnung zum Nanopillar . . . . . . . . . . . 70 5.2.4 Röntgentransmissionsmikroskopie . . . . . . . . . . . . . . . 72 5.3 Spin Transfer Torque-Schalten . . . . . . . . . . . . . . . . . . . . 74 5.3.1 STT-Schalten mit unterstützendem Magnetfeld . . . . . . . 74 5.3.2 STT-Schalten ohne unterstützendes Magnetfeld . . . . . . . 79 5.3.3 Betrachtung besonderer experimenteller Aspekte . . . . . . . 81 5.3.4 STT-Schalten ohne direkten Ladungstransport . . . . . . . . 89 5.3.5 Magnetisierungsumkehr durch Oersted-Feld . . . . . . . . . 93 6 Zusammenfassung und Ausblick 97 A STXM-Hysteresemessungen der Polarisatoren und Nanopillar 101 Literaturverzeichnis 105 / “Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nano electronic components. Therefore, new concepts for controlling the state of nano magnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar by means of Spin Transfer Torque (STT). In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM)” [1]. Therefore it could be demonstrated, to reversibly switch the nanopillar’s magnetic state even against the Oersted field which is induced by the switching current. Furthermore we could show, that magnetization switching is possible by a pure spin current that is diffusively transported beneath the nanopillar.:Kurzfassung v Abstract vi Danksagung xi 1 Einleitung 1 2 Grundlagen zu Spintronic 5 2.1 Elektronenspins als Grundlage für den Ferromagnetismus . . . . . . 6 2.2 Magnetowiderstandseffekte . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Anisotroper Magnetowiderstandseffekt (AMR) . . . . . . . . 8 2.2.2 Riesenmagnetowidersandseffekt (GMR) . . . . . . . . . . . . 10 2.2.3 Tunnelmagnetowiderstandeffekt (TMR) . . . . . . . . . . . 13 2.3 Spin–Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Spinpolarisation . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Spin-Injektion und Spin-Akkumulation . . . . . . . . . . . . 17 2.3.3 Spinpolarisierter elektrischer Transport . . . . . . . . . . . . 20 2.4 Spin Transfer Torque (STT) . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Geometrien für Spintronic–Bauelemente . . . . . . . . . . . . . . . 30 3 Probenkonzept und Fabrikationsmethoden 35 3.1 Probenkonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 Anforderungen an die CIP–STT-Struktur . . . . . . . . . . . 37 3.1.2 Anforderungen an die ferromagnetischer Materialien . . . . . 38 3.2 Techniken der Probenfabrikation . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Elektronenstrahllithografie (EBL) . . . . . . . . . . . . . . . 41 3.2.2 Positiv- und Negtivlack Prozess . . . . . . . . . . . . . . . . 41 3.2.3 Physikalisches Ätzen . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Probenfabrikation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Experimentelle Methoden 49 4.1 Transmissionsröntgenmikroskopie . . . . . . . . . . . . . . . . . . . 49 4.1.1 Rastertransmissionsröntgenmikroskopie (STXM) . . . . . . . 51 4.1.2 Kontrastmechanismen . . . . . . . . . . . . . . . . . . . . . 53 4.1.3 Röntgenmagnetischer zirkularer Dichroismus (XMCD) . . . 54 4.2 Magneto-optische Kerr–Effekt Mikroskopie . . . . . . . . . . . . . . 57 4.2.1 Kerr–Mikroskop . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.2 Longitudinale Kerr–Geometrie . . . . . . . . . . . . . . . . . 58 5 STT–Experimente und Diskussion 61 5.1 Experimenteller Aufbau . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Eigenschaften der magnetischen Bauelemente . . . . . . . . . . . . . 64 5.2.1 MOKE-Mikroskopie . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.2 Mikromagnetische Simulation . . . . . . . . . . . . . . . . . 67 5.2.3 Analytische Berechnung zum Nanopillar . . . . . . . . . . . 70 5.2.4 Röntgentransmissionsmikroskopie . . . . . . . . . . . . . . . 72 5.3 Spin Transfer Torque-Schalten . . . . . . . . . . . . . . . . . . . . 74 5.3.1 STT-Schalten mit unterstützendem Magnetfeld . . . . . . . 74 5.3.2 STT-Schalten ohne unterstützendes Magnetfeld . . . . . . . 79 5.3.3 Betrachtung besonderer experimenteller Aspekte . . . . . . . 81 5.3.4 STT-Schalten ohne direkten Ladungstransport . . . . . . . . 89 5.3.5 Magnetisierungsumkehr durch Oersted-Feld . . . . . . . . . 93 6 Zusammenfassung und Ausblick 97 A STXM-Hysteresemessungen der Polarisatoren und Nanopillar 101 Literaturverzeichnis 105

Page generated in 0.04 seconds