• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnetism in layered Nickelates and Cobaltates

Drees, Jan Yvo 14 January 2016 (has links) (PDF)
Single layered perovskites with the chemical formula La2−xSrxTO4 (T = transition metal) exhibit a variety of intriguing ordering phenomena. The most outstanding is the occurrence of high temperature superconductivity in La2−xSrxCuO4, which can be considered as the prototype system for the more complex cuprates. Some cuprates show incommensurate static charge order at low temperatures [38–40]. For others it is believed that charges are dynamically correlated [39, 147, 259]. Such effects are difficult to measure if the charges fluctuate. In contrast to the cuprate La2−xSrxCuO4 the isostructural nickelates and cobaltates remain insulating over a wide doping range [112, 134, 135, 138]. While incommensurate charge stripe order is long known for the nickelates, recently also evidence for charge stripes in cobaltates has been published [174]. Single crystal rods, with ≈10cm length and ≈0.8cm diameter, have been grown by the traveling solvent floating zone technique using an optical four mirror furnace. We investigated strontium doped nickelates in the range 0.15 ≤ x ≤ 0.22. In addition, also co-doped nickelates have been investigated. A large number of samples with different doping concentrations enabled us to systematically characterize the sample properties. Powder X-ray diffraction measurements were used to determine the lattice parameters. For the nickelates we could confirm the doping dependence of the lattice constants reported in literature [202]. The main interest for the cobaltate system was in the strontium doping range 1/3 ≤ x ≤ 1/2. It was previously reported that the ab-lattice parameter exhibits an anomalous peak around a Sr doping x ≈ 1/3 [140]. We could not confirm such an anomaly for our samples and, instead, we observe a strictly monotonic doping dependence of the lattice parameters which we attribute to the close to perfect stoichiometry of our samples. Samples with the 214-layered perovskite structure can be synthesized over a wide range of oxygen off-stoichiometry. However, the oxygen content can have similarly strong influence on the sample properties as strontium doping. It is therefore essential for data interpretation to determine the oxygen off stoichiometry. EDX and WDX measurements were used to confirm the oxygen content in our nickelates to be nearly stoichiometric. The oxygen content determination of the cobaltates is somewhat more difficult. Thermogravimetry measurements in a flow of Ar/H2 confirmed a nearly stoichiometric oxygen content δ in La2−xSrxCoO4+δ for all samples. We used neutron diffraction measurements to determine the magnetic order in our nickelate samples. In stripe ordered nickelates a small titanium co-doping of the order of 5% is suficcient to supress the incommensurate magnetism and restore antiferromagnetic order. Within the series of zinc co-doped nickelates three samples exhibit an incommensurability epsilon ≈ 1/8, indicating the stabilization of an intermediate stripe pattern with an eightfold unit cell. Compared to the epsilon ≈ 1/3 regime the correlation length is greatly reduced. The magnon dispersion of two samples within the intermediate stripe phases with epsilon ≈ 1/8 and epsilon ≈ 1/4 has been measured with neutron spectroscopy. The observed dispersion neither resembles the one in the undoped nor the 1/3 strontium doped samples. Despite the amount of disorder in our co-doped nickelate materials there are no clear signs for the emergence of hourglass spectra which is most likely caused by a strong exchange interaction across the holes. We investigated the charge and magnetic order in the incommensurate regime of La2−xSrxCoO4 with doping 0.33 ≤ x ≤ 0.5 by elastic neutron scattering and hard X-ray synchrotron measurements. In contrast to the established opinion that this phase is characterized by charge stripe order we were able to show that no charge stripes are present. Instead we found that checkerboard charge order, which is most stable at x = 1/2, persists to a much lower doping than previously thought. The absence of charge stripes is also in agreement with the dispersion of the top most Co-O bond stretching phonon mode. Charge order can induce an anomaly in this branch according to the modulation vector ~q. We observed a softening at ~q = (1/2 1/2 0), which is consistent with our expectations for a checkerboard charge ordered phase. Inelastic neutron measurements revealed an additional high energy part of the hourglass dispersion which has not been reported so far. The entire lowenergy spin excitations that belong to the classical hour-glass dispersion are mostly in-plane excitations, the newly discovered high-energy magnon mode arises from out-of-plane excitations. The resemblance between the low energy excitations below the neck of the hourglass with the excitations in La1.5Sr0.5CoO4 and similarly between the high energy excitations with those observed in La2CoO4 suggests that the observed dispersion is not a single dispersion, but instead consists of two dispersions with distinct origin. In this model the low-energy dispersion arises mainly from magnetic excitations of hole doped regions and the high-energy part would be connected to magnetic excitations within the undoped islands. The absence of charge stripe order in the insulating cobaltates in combination with an unmagnetic low spin state for Co+3 requires a different explanation for the presence of incommensurate magnetic order. We propose a picture on the basis of the ideal checkerboard charge order of the half doped reference system. Decreasing the strontium concentration requires the replacement of Co+3 by Co+2, effectively resulting in the competition between the antiferromagnetic order of the undoped and the antiferromagnetic order of the half doped compound. The induced frustration can be released by a twisting of magnetic moments away from their antiferromagnetic orientation, ultimately leading to the observed incommensurate magnetic order.
2

Effect of microstructure on the magnetic properties of transition metal implanted TiO2 films

Yildirim, Oguz 07 March 2016 (has links) (PDF)
The combined electronic, optic and magnetic properties of transition metal (TM) implanted ferromagnetic TiO2 is of interest for spintronic applications. The nature of the observed abundant ferromagnetism in such materials has been investigated for more than one and a half decades, yet still no clear explanation for its appearance can be given. In this thesis, the origin of the ferromagnetic order in TM:TiO2 systems is studied by investigating the interplay between structural order, defects and incorporation of implanted ions within the host lattice. The defect properties of the host TiO2 are altered by preparing different microstructures of TiO2 (e.g. amorphous, polycrystalline anatase and epitaxial anatase). The difference in microstructure is also found to influence the incorporation of the implanted ions with the host lattice. The crystallographic incorporation of the implanted TM atoms is found only in crystalline films. Moreover, it is observed that the suppression of the dopant related secondary phases can also be achieved by changing the microstructure. The obtained experimental results are compared with the existing theoretical frameworks, while the most relevant one describing our findings is elucidated. Based on this discussion, we propose an ideal microstructural candidate for a dilute magnetic oxide material based on our results. / Die kombinierten elektrischen, optischen und ferromagnetischen Eigenschaften von TiO2, welches mit einem Übergangsmetall (TM) dotiert wurde, sind für Anwendungen in der Spintronik von hoher Bedeutung. Obwohl dieses Material seit mehr als anderthalb Jahrzehnten untersucht wird, kann derzeit noch keine eindeutige Erklärung für den beobachteten Ferromagnetismus gegeben werden. In dieser Arbeit wird die Ursache für die ferromagnetische Ordnung in TM:TiO2-Systemen untersucht, indem der Zusammenhang von struktureller Ordnung, Defekten und der Einlagerung der implantierten Ionen im Wirtsgitter analysiert wird. Durch die Verwendung unterschiedlicher Mikrostrukturen (z.B. amorphes, polykristalliner Anatas und epitaktischer Anatas) wurden auch die Defekteigenschaften des Wirts-Titanoxid variiert. Dabei zeigte sich ein Einfluss der unterschiedlichen Mikrostrukturen auf die Einlagerung der implantierten Atome in das Wirtsgitter. So konnte die Substitution von Ti-Atomen durch Atome des dotierten Übergangsmetalls nur in kristallinen Filmen beobachtet werden. Weiterhin wurde herausgefunden, dass die vom Dotanden hervorgerufenen Sekundärphasen durch die initiale Mikrostruktur unterdrückt werden können. Die experimentellen Ergebnisse wurden mit aktuellen Theorien verglichen. Zusammenfassend wird ein Überblick über die wichtigsten Ergebnisse gegeben, auf Basis welcher eine optimale Mikrostruktur für ein verdünntes magnetisches Oxid vorgeschlagen wird.
3

Isotropic nanocrystalline (Nd,Pr)(Fe,Co)B permanent magnets / Isotropen nanokristallinen (Nd,Pr)(Fe,Co)B-Permanentmagneten

Bollero Real, Alberto 18 November 2003 (has links) (PDF)
Nanokristalline Permanentmagnete zeigen ungewöhnliche magnetische Eigenschaften aufgrund von Oberflächen- und Grenzflächeneffekten, die verschieden von denen massiver oder mikrokristalliner Materialien sind. Diese Arbeit zeigt Ergebnisse einer systematischen Untersuchung der Beziehung zwischen Mikrostruktur und magnetischen Eigenschaften von isotropen nanokristallinen (Nd,Pr)(Fe,Co)B-Permanentmagneten. Hochkoerzitive Magnete vom Typ (Nd,Pr)FeB wurden durch hochenergetisches Mahlen in der Kugelmühle oder Rascherstarrung hergestellt. Der Einfluss geringer Mengen von Zusätzen wie Dy und Zr und die Substitution von Nd durch Pr auf die magnetischen Eigenschaften wird dargestellt. Weiterhin wurde eine Einschätzung des Warmumformverhaltens dieser Materialien durchgeführt. Hochenergetisches Kugelmahlen einer Legierung mit der Anfangszusammensetzung Pr9Nd3Dy1Fe72Co8B6.9Zr0.1 führte, nach Glühbehandlung, zu fast einphasigem Magnetpulver mit einem maximalen Energieprodukt von (BH)max~140 kJm-3. Das hochenergetische Kugelmahlen wurde zu einer sehr vielseitigen Technik zur Herstellung hochleistungsfähiger Nanokompositmagnete weiterentwickelt. Das Zulegieren unterschiedlicher Anteile von weichmagnetischem alpha-Fe ist damit sehr effektiv möglich. Der Zusatz von 25 Gew.-% alpha-Fe führt zu einem hohen (BH)max=178kJm-3. Dies wird auf eine sehr effektive Austauschkopplung zwischen den hart- und weichmagnetischen Phasen zurückgeführt. Die Natur der intergranularen Wechselwirkungen kann durch die Wohlfarth´sche Remanenzanalyse (?deltaJ-plot¡§) beschrieben werden. Im speziellen wurden deltaJ-Diagramme für verschiedene (i) alpha-Fe Gehalte, (ii) Korngrößen und (iii) Austauschlängen erstellt. Es konnte gezeigt werden, dass in den Nanokompositmagneten auf Pr-Basis keine Spinumorientierung auftritt. Abschließend zeigt die Arbeit die Möglichkeit der Nutzung einer mechanisch aktivierten Gas-Festkörper-Reaktion auf, mit der eine sehr feinkörnige Mikrostruktur erhalten wird. Die Untersuchungen wurden mit stöchiometrischen Nd2(Fe1-xCox)14B-Legierungen begonnen (x=0-1). Die Verbindungen wurden unter höheren Wasserstoffdrücken und Temperaturen gemahlen, wodurch sie zu NdH2+delta und krz-(Fe,Co) (x=0-0.75) oder kfz-Co (x=1) entmischt wurden. Die Korngrößen des rekombinierten Nd2(Co,Fe)14B-Materials liegen im Bereich von 40-50 nm. / Nanocrystalline permanent magnets present unusual magnetic properties because of surface/interface effects different from those of bulk or microcrystalline materials. This work presents results of a systematic investigation of the relationship between microstructure and magnetic properties in isotropic nanocrystalline (Nd,Pr)(Fe,Co)B permanent magnets. Highly coercive (Nd,Pr)FeB-type magnets have been produced using high energy ball milling and melt-spinning. The influence of small amounts of additives, Dy and Zr, and the substitution of Nd by Pr on the microstructural and magnetic properties are shown. An assessment of the hot deformation behaviour has been carried out. Intensive milling of an alloy with starting composition Pr9Nd3Dy1Fe72Co8B6.9Zr0.1 yields, after annealing treatment, nearly single-phase magnet powders with a maximum energy product (BH)max?î140kJm-3. Co has a beneficial effect on the intrinsic magnetic properties but also on the microstructure, with a mean grain size of 20nm. Intensive milling is used to produce high-performance nanocomposite magnets by blending this latter alloy with different fractions of soft magnetic alfa-Fe. Addition of 25wt.% alfa-Fe leads to a high (BH)max=178 kJm-3 due to an effective exchange-coupling between the hard and the soft magnetic phases. The intergrain interactions between the crystallites of the nanocomposite structure are analysed. Demagnetisation recoil loops of the nanocomposite magnets show relatively open minor loops due to the exchange-spring mechanism. Information about the intergrain interactions during demagnetisation are obtained by plotting the deviation of the demagnetising remanence from the Wohlfarth-model (¡§deltaJ-plot¡¨). Exchange-coupling phenomena are studied by analysing the evolution of the corresponding deltaJ values when varying (i) the alfa-Fe content, (ii) the annealing temperature, i.e. the grain size and (iii) the measurement temperature. Low temperature measurements do not reveal any sign of spin reorientation for these Pr-based nanocomposite magnets. The work concludes showing the possibility of using a mechanically activated gas-solid reaction to obtain an effective grain refined microstructure starting from stoichiometric Nd2(Fe1-xCox)14B alloys (x=0-1). These compounds were milled under enhanced hydrogen pressure and temperature leading to their disproportionation into NdH2+delta and bcc-(Fe,Co) (x=0-0.75) or fcc-Co (x=1). Grain sizes of recombined Nd2(Fe,Co)14B materials were found to be 40-50nm.
4

Neutron scattering study on R2PdSi3 (R = Ho, Er, Tm) compounds

Tang, Fei 19 January 2011 (has links) (PDF)
Previous studies on the family of inter-metallic rare-earth compounds R2PdSi3 revealed multifaceted magnetic properties, for instance, spin-glass like behavior. Experimental observations include: Signs of a crystallographic superstructure, complicated magnetic structures both in zero field and in applied magnetic fields as well as a generic phase in applied fields for compounds in the series with the heavy rare-earths R = Gd, Tb, Dy, Ho, Er and Tm. This thesis expands the studies on the magnetic properties of R2PdSi3 employing mainly neutron scattering on single crystals with the focus on the compounds with R = Ho, Er and Tm. A detailed analysis of the crystallographic superstructure using modulation wave approach and group theory is presented. The resulting structure implies the existence of two different rare-earth sites with reduced symmetry and an arrangement of the different sites according to sequences as determined by the superstructure. It will be shown that the reduced symmetry of the rare-earth sites is explicitly observed in the energy spectra of inelastic neutron scattering. The results on the magnetic structures and excitations are shown and discussed in the framework of the superstructure model. Specifically the generic phase in applied fields is interpreted as a direct consequence of the crystallographic superstructure. It is rather unusual that a crystallographic superstructure is playing such a decisive, and through the field dependence also tunable role in determining the magnetic properties as observed in R2PdSi3. The mediating interactions between the crystallographic part and the magnetic part of the system will be discussed. / Frühere Untersuchungen der Familie der intermetallischen Selten-Erd Verbindungen R2PdSi3 zeigten vielfältige magnetische Eigenschaften, zum Beispiel ein Spin-glas ähnliches Verhalten. Die experimentellen Beobachtungen beinhalten: Zeichen für eine kristallographische Überstruktur, komplizierte magnetische Strukturen, sowohl im Nullfeld als auch in angelegten Magnetfeldern und darüberhinaus eine generische Phase in Magnetfeldern in den untersuchten Verbindungen mit den schweren Selten-Erden R = Gd, Tb, Dy, Ho, Er und Tm. Diese Dissertation erweitert die Untersuchungen der magnetischen Eigenschaften von R2PdSi3, hauptsächlich durch Verwendung von Neutronenstreuung an Einkristallen, mit dem Schwerpunkt auf den Verbindungen mit R = Ho, Er und Tm. Eine genaue Analyse der kristallographischen Überstruktur mittels Modulationswellenansatz und Gruppentheorie wird präsentiert. Das resultierende Strukturmodell impliziert die Existenz zweier unterschiedlicher Selten-Erd Lagen mit reduzierter Symmetrie in einer Anordnung entsprechend der durch die Überstruktur festgelegten Sequenzen. Es wird gezeigt, dass die reduzierte Symmetrie der Selten-Erd Lagen durch Beobachtungen der inelastischen Neutronenstreuung explizit bestätigt wird. Die Ergebnisse der magnetischen Strukturen und Anregungen werden im Rahmen des Überstrukturmodels diskutiert. Speziell die generische Phase folgt als direkte Konsequenz aus der Überstruktur. Es ist eher ungewöhnlich, dass eine kristallographische Überstruktur eine solch bestimmende und bei Magnetfeldvariation auch “tunebare” Rolle spielt, wie dies in den R2 PdSi3 Verbindungen beobachtet wird. Die vermittelnden Wechselwirkungen zwischen Struktur und Magnetismus werden diskutiert.
5

Magnetic Properties of Molecular and Nanoscale Magnets

Krupskaya, Yulia 20 October 2011 (has links) (PDF)
The idea of miniaturizing devices down to the nanoscale where quantum ffeffects become relevant demands a detailed understanding of the interplay between classical and quantum properties. Therefore, characterization of newly produced nanoscale materials is a very important part of the research in this fifield. Studying structural and magnetic properties of nano- and molecular magnets and the interplay between these properties reveals new interesting effects and suggests ways to control and optimize the respective material. The main task of this thesis is investigating the magnetic properties of molecular magnetic clusters and magnetic nanoparticles recently synthesized by several collaborating groups. This thesis contains two main parts focusing on each of these two topics. In the first part the fundamental studies on novel metal-organic molecular complexes is presented. Several newly synthesized magnetic complexes were investigated by means of different experimental techniques, in particular, by electron spin resonance spectroscopy. Chapter 1 in this part provides the theoretical background which is necessary for the interpretation of the effects observed in single molecular magnetic clusters. Chapter 2 introduces the experimental techniques applied in the studies. Chapter 3 contains the experimental results and their discussion. Firstly, the magnetic properties of two Ni-based complexes are presented. The complexes possess different ligand structures and arrangements of the Ni-ions in the metal cores. This difffference dramatically affffects the magnetic properties of the molecules such as the ground state and the magnetic anisotropy. Secondly, a detailed study of the Mn2Ni3 single molecular magnet is described. The complex has a bistable magnetic ground state with a high spin value of S = 7 and shows slow relaxation and quantum tunnelling of the magnetization. The third section concentrates on a Mn(III)-based single chain magnet showing ferromagnetic ordering of the Mn-spins and a strong magnetic anisotropy which leads to a hysteretic behavior of the magnetization. The last section describes a detailed study of the static and dynamic magnetic properties of three Mn-dimer molecular complexes by means of static magnetization, continuous wave and pulse electron spin resonance measurements. The results indicate a systematic dependence of the magnetic properties on the nearest ligands surrounding of the Mn ions. The second part of the thesis addresses magnetic properties of nano-scaled magnets such as carbon nanotubes fifilled with magnetic materials and carbon-coated magnetic nanoparticles. These studies are eventually aiming at the possible application of these particles as agents for magnetic hyperthermia. In this respect, their behavior in static and alternating magnetic fifields is investigated and discussed. Moreover, two possible hyperthermia applications of the studied magnetic nanoparticles are presented, which are the combination of a hyperthermia agents with an anticancer drug and the possibility to spatially localize the hyperthermia effffect by applying specially designed static magnetic fifields.
6

Spin Transfer Torque-induziertes Schalten von Nanomagneten in lateraler Geometrie bei Raumtemperatur / Spin transfer torque induced switching of nano magnets in lateral spin valve geometry at roomtemperature

Buhl, Matthias 14 April 2014 (has links) (PDF)
Das Schalten und das Auslesen der magnetischen Ausrichtung einzelner winziger magnetischer Informationsspeicher müssen zu wirklich nanoskopischer Dimension entwickelt werden, um mit der Miniaturisierung von modernen, nanoelektronischen Bauteilen Schritt zu halten. Daher sind neue Konzepte, den magnetischen Zustand von Nanostrukturen elektronisch gezielt zu beeinflussen, derzeitig im Mittelpunkt wissenschaftlicher Untersuchungen. Diese Arbeit befasst sich mit dem zuverlässigen Einstellen der Magnetisierung eines rein horizontal kontaktierten, nanoskopischen Magneten, in zwei stabile Zustände. Ein spinpolarisierter Strom wird bei Raumtemperatur in eine Leiterbahn unterhalb des magnetischen Nanopillars injiziert. Spindiffusion durch den Kontakt zwischen der Leiterbahn (Cu) und dem Pillar (CoFe) ruft eine Spin-Akkumulation im Nanopillar hervor, der durch den Spin Transfer Torque-Effekt (STT) vermittelt wird. Bei diesem Prozess verursachen die akkumulierten Elektronenspins ein auftretendes Netto-Moment, das senkrecht auf die Magnetisierungsorientierung des Nanopillars wirkt und so das Schalten ermöglicht. In den STT-induzierten Schaltexperimenten wird der magnetische Zustand des Nanopillars durch eine bildgebendes Messverfahren mittels Rasterröntgentransmissionsmikroskopie (STXM) erfasst. So konnte gezeigt werden, dass sich die Magnetisierung des Pillars auch gegen das Oersted-Feld des Schaltstroms reversibel schalten lässt. / “Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nano electronic components. Therefore, new concepts for controlling the state of nano magnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar by means of Spin Transfer Torque (STT). In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM)” [1]. Therefore it could be demonstrated, to reversibly switch the nanopillar’s magnetic state even against the Oersted field which is induced by the switching current. Furthermore we could show, that magnetization switching is possible by a pure spin current that is diffusively transported beneath the nanopillar.
7

Microscopic description of magnetic model compounds

Schmitt, Miriam 24 June 2013 (has links) (PDF)
Solid state physics comprises many interesting physical phenomena driven by the complex interplay of the crystal structure, magnetic and orbital degrees of freedom, quantum fluctuations and correlation. The discovery of materials which exhibit exotic phenomena like low dimensional magnetism, superconductivity, thermoelectricity or multiferroic behavior leads to various applications which even directly influence our daily live. For such technical applications and the purposive modification of materials, the understanding of the underlying mechanisms in solids is a precondition. Nowadays DFT based band structure programs become broadly available with the possibility to calculate systems with several hundreds of atoms in reasonable time scales and high accuracy using standard computers due to the rapid technical and conceptional development in the last decades. These improvements allow to study physical properties of solids from their crystal structure and support the search for underlying mechanisms of different phenomena from microscopic grounds. This thesis focuses on the theoretical description of low dimensional magnets and intermetallic compounds. We combine DFT based electronic structure and model calculations to develop the magnetic properties of the compounds from microscopic grounds. The developed, intuitive pictures were challenged by model simulations with various experiments, probing microscopic and macroscopic properties, such as thermodynamic measurements, high field magnetization, nuclear magnetic resonance or electron spin resonance experiments. This combined approach allows to investigate the close interplay of the crystal structure and the magnetic properties of complex materials in close collaboration with experimentalists. In turn, the systematic variation of intrinsic parameters by substitution or of extrinsic factors, like magnetic field, temperature or pressure is an efficient way to probe the derived models. Especially pressure allows a continuous change of the crystal structure on a rather large energy scale without the chemical complexity of substitution, thus being an ideal tool to consistently alter the electronic structure in a controlled way. Our theoretical results not only provide reliable descriptions of real materials, exhibiting disorder, partial site occupation and/or strong correlations, but also predict fascinating phenomena upon extreme conditions. In parts this theoretical predictions were already confirmed by own experiments on large scale facilities. Whereas in the first part of this work the main purpose was to develop reliable magnetic models of low dimensional magnets, in the second part we unraveled the underlying mechanism for different phase transitions upon pressure. In more detail, the first part of this thesis is focused on the magnetic ground states of spin 1/2 transition metal compounds which show fascinating phase diagrams with many unusual ground states, including various types of magnetic order, like helical states exhibiting different pitch angles, driven by the intimate interplay of structural details and quantum fluctuations. The exact arrangement and the connection of the magnetically active building blocks within these materials determine the hybridization, orbital occupation, and orbital orientation, this way altering the exchange paths and strengths of magnetic interaction within the system and consequently being crucial for the formation of the respective ground states. The spin 1/2 transition metal compounds, which have been investigated in this work, illustrate the great variety of exciting phenomena fueling the huge interest in this class of materials. We focused on cuprates with magnetically active CuO4 plaquettes, mainly arranged into edge sharing geometries. The influence of structural peculiarities, as distortion, folding, changed bonding angles, substitution or exchanged ligands has been studied with respect to their relevance for the magnetic ground state. Besides the detailed description of the magnetic ground states of selected compounds, we attempted to unravel the origin for the formation of a particular magnetic ground state by deriving general trends and relations for this class of compounds. The details of the treatment of the correlation and influence of structural peculiarities like distortion or the bond angles are evaluated carefully. In the second part of this work we presented the results of joint theoretical and experimental studies for intermetallic compounds, all exhibiting an isostructural phase transition upon pressure. Many different driving forces for such phase transitions are known like quantum fluctuations, valence instabilities or magnetic ordering. The combination of extensive computational studies and high pressure XRD, XAS and XMCD experiments using synchrotron radiation reveals completely different underlying mechanism for the onset of the phase transitions in YCo5, SrFe2As2 and EuPd3Bx. This thesis demonstrates on a series of complex compounds that the combination of ab-initio electronic structure calculations with numerical simulations and with various experimental techniques is an extremely powerful tool for a successful description of the intriguing quantum phenomena in solids. This approach is able to reduce the complex behavior of real materials to simple but appropriate models, this way providing a deep understanding for the underlying mechanisms and an intuitive picture for many phenomena. In addition, the close interaction of theory and experiment stimulates the improvement and refinement of the methods in both areas, pioneering the grounds for more and more precise descriptions. Further pushing the limits of these mighty techniques will not only be a precondition for the success of fundamental research at the frontier between physics and chemistry, but also enables an advanced material design on computational grounds.
8

From 2D CoCrPt:SiO2 films with perpendicular magnetic anisotropy to 3D nanocones — A step towards bit patterned media —

Ball, David Klaus 02 July 2013 (has links) (PDF)
Due to the ever-increasing worldwide consumption of memory for digital information, new technologies for higher capacity and faster data storage systems have been the focus of research and development. A step towards achieving higher data storage densities or magnetic recording media is the concept of bit patterned media, where the magnetic recording layer is divided up into magnetically isolated bit units. This approach is one of the most promising technologies for increasing data storage densities and could be implemented by nanostructuring the wafer. Therefore, the fabrication of the appropriate nanostructures on a small scale and then be able to manufacture these structures on an industrial scale is one of the problems where science and industry are working on a solution. In addition, the answer to the open question about the influence that patterning on the nano length scale has on the magnetic properties is of great interest. The main goal of this thesis is to answer the open question, which magnetic properties can be tailored by a modification of the surface texture on the nanometre length scale. For this purpose the following properties: anisotropy, remanence, coercivity, switching field distribution, saturation magnetisation, Gilbert damping, and inhomogeneous linebroadening were compared between planar two dimensional thin ferromagnetic films and three dimensional magnetic structures. In addition, the influences of the tailored morphology on the intergranular or the exchange coupling between the structures, which is called interdot exchange coupling, was investigated. For the ferromagnetic thin films, the focus of the investigations was on the granular CoCrPt:SiO2 and [Co/Pd] layer, which currently are the state-of-the-art material for magnetic data storage media. These materials are characterised by their high coercivity and high perpendicular anisotropy, which has a low spatial distribution in the preferred direction of magnetisation. In this work the pre-structured GaSb(001) substrate with self-assembled periodic nanocone structures at the surface are used. The preparation by ion beam erosion of these structures is simple, fast, and highly reproducible and therefore this method is particularly beneficial for fundamental research. To compare the 2D thin films with the 3D magnetic structures, besides the pre-structured specimen, planar samples were also fabricated. The first sample series prepared was coated by Py. Due to the fact that the magnetic properties of this material are well-known, it was also possible to do some OOMMF simulations in addition to the VNA-FMR and MOKE measurements. Afterwards two planar samples with CoCrPt and CoCrPt:SiO2 were prepared. The planar CoCrPt:SiO2 samples were Co+ ion implanted to study the influence of such irradiation on the intergranular and interdot exchange coupling, switching field distribution, and in particular on the spin dynamics. Moreover, both samples were measured by TRMOKE in order to obtain information about the spin dynamics. Subsequently, the perpendicular storage media materials CoCrPt:SiO2 and [Co/Pd] were deposited on a prestructured GaSb(001) nanocone substrate surface. These sample series were measured by MOKE, SQUID, and vector-VSM. The measurements demonstrate the influence of the periodicity and height of the nanocones on the intergranular and interdot exchange coupling. They also show the reorientation of the magnetisation with respect to the curvature of the substrate template and furthermore, the morphology-induced influences on the magnetic domains. From the comparison between the results for the planar and the pre-structured samples, a decrease of the interdot exchange coupling was observed, which scales together with the periodicity of the nanocone pattern. In addition, it was shown that for all samples with thin magnetic films on nanocones,the magnetisation aligns along the curvature of the underlying nanocone structure. For Py on nanocones, planar granular CoCrPt:SiO2, and planar granular CoCrPt, measurements by VNA-FMR and TRMOKE could be carried out, which yielded information about the spin dynamics. The results obtained for both of the planar sample are comparable to values from the literature for the Gilbert damping. The results for the Py samples showed that the commonly used 2D model resonance condition is, in case of a 3D magnetic structure, no longer valid due to the alignment of the magnetisation along the underlying substrate structure and therefore an new model has to be derived. / Aufgrund des weltweiten, immer weiter steigenden Bedarfs an Speicherplatz von digitalen Information, sind neue Technologien für größere und schnellere Speichermedien im Fokus von Forschung und Entwicklung. Ein Schritt hin zu einer höheren Speicherdichte in der magnetischen Datenspeicherung ist dabei das sogenannte Konzept der ”Bit patterned media”, das definierte Informationseinheiten auf regelmäßig angeordneten Nanostrukturen beschreibt. Dieser Ansatz ist einer der derzeit vielversprechendsten Optionen die Speicherdichte zu erhöhen. Dabei ist die Herstellung der benötigten Nanostrukturen und deren Skalierung hin zu makroskopischen Dimensionen eines der Probleme an deren Lösung die Wissenschaft und Industrie derzeit arbeitet. Desweiteren ist die Antwort auf die noch offene Frage nach der Beeinflussung der nanoskaligen Strukturen auf die magnetischen Eigenschaften von großem Interesse. Das Hauptziel in dieser Arbeit ist es, einen Beitrag zur Beantwortung der Frage, welche magnetischen Eigenschaften sich durch eine Veränderung der Oberflächenstruktur im Nanometerbereich beeinflussen lassen, zu leisten. Hierzu wurden die folgenden Eigenschaften, wie zum Beispiel die Anisotropie, Remanenz,Koerzitivität, Schaltfeldverteilung, Sättigungsmagnetisierung, Gilbertdämpfung und inhomogene Linienverbreiterung von planaren zweidimensionalen dünnen ferromagnetische Schichten mit denen von dreidimensionalen magnetischen Strukturen verglichen. Zusätzlich wurde der Einfluss der angegpassten Morphologie auf die intergranularen- beziehungsweise auf die zwischen den Strukturen wirkende (interdot) Austauschkopplung untersucht. Der Hauptaugenmerk bei den ferromagnetisch dünnen Schichten lag dabei auf den granularen CoCrPt:SiO2 und [Co/Pd] Filmen, die heutzutage ein Standardmaterial für die magnetischen Speichermedien darstellen. Diese Materialien zeichnen sich durch eine hohe Koerzivität und senkrechte Anisotropie, mit geringer räumlicher Verteilung der Vorzugsrichtung der Magnetisierung, aus. Die hier vorgestellten vorstrukturierten GaSb(001) Substrate mit selbstordnenden periodischen Nanokegeln auf der Oberfläche, sind mittels Ionenstrahlerosion einfach, schnell und sehr gut reproduzierbar herzustellen. Deshalb ist diese Methode besonders für die Grundlagenforschung von Vorteil. Um einen Vergleich zwischen 2D Filmen und 3D Strukturen ziehen zu können, wurden neben den vorstrukturierten Substraten auch planare Proben beschichtet. Eine erste Versuchsreihe wurde mit einem dünnen Py Film präpariert. Da dessen magnetische Eigenschaften wohlbekannt sind, konnten neben den Untersuchungen mit VNA-FMR und MOKE auch einige OOMF Simulationen erstellt werden. Danach wurden zwei Proben mit planarem CoCrPt beziehungsweise CoCrPt:SiO2 untersucht. Bei den planaren CoCrPt:SiO2 Proben wurden außerdem noch Co+ Ionen implantiert, um deren Auswirkungen auf die intergranulare Austauschkopplung, Schaltfeldverteilung und besonders auf die Spindynamik zu bestimmen. Bei beiden Probensystemen konnte zusätzlich die Spindynamik mittels zeitaufgelöstem MOKE gemessen werden. Im Anschluss wurden die beiden senkrechten Speichermedien CoCrPt:SiO2 and [Co/Pd] auf Substraten mit Nanokegeln vorstrukturierten GaSb(001) Oberflächen abgeschieden. Diese Proben wurden mit MFM, MOKE, SQUID und Vektor-VSM vermessen. Aus den Messungen konnnten dann die Einflüsse auf die intergranulare- beziehungsweise interdot Austauschkopplung in Abhängigkeit von der Periodizität und Höhe der Nanokegel bestimmt werden, sowie die Umorientierung der Magnetisierung bezüglich der Substratkrümmung und den Morphologie induzierten Einfluss auf die magnetischen Domänen. Anhand der Vergleiche zwischen den Messungen der planaren und den vorstrukturierten Proben konnte eine Verringerung der Austauschkopplung zwischen den Strukturen gezeigt werden, die mit der Nanokegelstrukturperiodizität skaliert. Außerdem wurde in allen dünnen magnetischen Filmen auf Nanokegeln gezeigt, dass die Magnetisierung sich in Abhängigkeit der darunterliegenden Struktur ausrichtet. Bei den Py auf Nanokegeln, den planaren CoCrPt und dem planaren CoCrPt:SiO2 Proben konnten außerdem mit VNA-FMR und TRMOKE Informationen bezüglich der Spindynamik gemessen werden. Die erzielten Ergebnisse, der beiden planaren Proben, sind vergleichbar mit denen, aus der Literatur bekannten Werten, für die Gilbertdämpfung. Darüber hinaus wurde durch die Messungen an den Py Proben gezeigt, dass die Theorie, des bisher genutzten 2D Modells, nicht mehr gültig ist, da sich die Magnetisierung entlang der Substratstruktur ausrichtet, und deshalb ein neues Model aufgestellt werden muss.

Page generated in 0.0292 seconds