• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ESR and Magnetization Studies of Transition Metal Molecular Compounds

Aliabadi, Azar 26 January 2016 (has links) (PDF)
Molecule-based magnets (molecular magnets) have attracted much interest in recent decades both from an experimental and from a theoretical point of view, not only because of their interesting physical effects, but also because of their potential applications: e.g., molecular spintronics, quantum computing, high density information storage, and nanomedicine. Molecular magnets are at the very bottom of the possible size of nanomagnets. On reducing the size of objects down to the nanoscale, the coexistence of classical properties and quantum properties in these systems may be observed. In additional, molecular magnets exist with structural variability and permit selective substitution of the ligands in order to alter their magnetic properties. Therefore, these characteristics make such molecules suitable candidates for studying molecular magnetism. They can be used as model systems for a detailed understanding of interplay between structural and magnetic properties of them in order to optimize desired magnetic properties. This thesis considers the investigation of magnetic properties of several new transition metal molecular compounds via different experimental techniques (continuous wave electron spin resonance (CW ESR), pulse ESR, high-field/high-frequency ESR (HF-ESR) and static magnetization techniques). The first studied compounds were mono- and trinuclear Cu(II)-(oxamato, oxamidato)/bis(oxamidato) type compounds. First, all components of the g-tensor and the tensors of onsite ACu and transferred AN HF interactions of mononuclear Cu(II)- bis(oxamidato) compounds have been determined from CW ESR measurements at 10 GHz and at room temperature and pulse ELDOR detected NMR measurements at 35 GHz and at 20 K. The spin density distributions of the mononuclear compounds have been calculated from the experimentally obtained HF tensors. The magnetic exchange constants J of their corresponding trinuclear compounds were determined from susceptibility measurements versus temperature. Our discussion of the spin density distribution of the mononuclear compounds together with the results of the magnetic characterization of their corresponding trinuclear compounds show that the spin population of the mononuclear compounds is in interplay with the J values of their corresponding trinuclear compounds. The second studied compounds were polynuclear Cu(II)-(bis)oxamato compounds with ferrocene and ferrocenium ligands. The magnetic properties of these compounds were studied by susceptibility measurements versus temperature to determine J values. In addition, the ESR technique is used to investigate the magnetic properties of the studied compounds because they contain two different magnetic ions and because only the ESR technique can selectively excite different electron spin species. These studies together with geometries of the ferrocenium ligands determined by crystallographic studies indicate that the magnetic interaction between a central Cu(II) and a Fe(III) ions changed from the antiferromagnetic coupling to the ferromagnetic coupling when a stronger distortion of the axial symmetry in the feroccenium cation exists. Therefore, the degree of the distortion of the feroccenium cation is a control parameter for the sign of the interaction between the central Cu(II) ion and the Fe(III) spins of the studied compounds. The last two studied molecular magnets were a binuclear Ni(II) compound (Ni(II)-dimer) and a cube-like tetranuclear compound with a [Fe4O4]-cube core (Fe4-cube). HF-ESR measurements enabled us to determine the g-factor, the sign, and the absolute value of the magnetic anisotropy parameters. Using this information together with static magnetization measurements, the J value and the magnetic ground state of the studied compounds have been determined. In Ni(II)-dimer, two Ni(II) ions, each having a spin S = 1, are coupled antiferromagnetically that leads to a ground state with total spin Stot = 0. An easy plane magnetic anisotropy with a preferable direction for each Ni(II) ion is found. For Fe4-cube, a ground state with total spin Stot = 8 has been determined. The analysis of the frequency dependence and temperature dependence of HF-ESR lines reveals an easy axis magnetic anisotropy (Dcube = -22 GHz (-1 K)) corresponding to an energy barrier of U = 64 K for the thermal relaxation of the magnetization. These results indicate that Fe4-cube is favorable to show single molecular magnet (SMM) behavior.
2

ESR and Magnetization Studies of Transition Metal Molecular Compounds

Aliabadi, Azar 13 January 2016 (has links)
Molecule-based magnets (molecular magnets) have attracted much interest in recent decades both from an experimental and from a theoretical point of view, not only because of their interesting physical effects, but also because of their potential applications: e.g., molecular spintronics, quantum computing, high density information storage, and nanomedicine. Molecular magnets are at the very bottom of the possible size of nanomagnets. On reducing the size of objects down to the nanoscale, the coexistence of classical properties and quantum properties in these systems may be observed. In additional, molecular magnets exist with structural variability and permit selective substitution of the ligands in order to alter their magnetic properties. Therefore, these characteristics make such molecules suitable candidates for studying molecular magnetism. They can be used as model systems for a detailed understanding of interplay between structural and magnetic properties of them in order to optimize desired magnetic properties. This thesis considers the investigation of magnetic properties of several new transition metal molecular compounds via different experimental techniques (continuous wave electron spin resonance (CW ESR), pulse ESR, high-field/high-frequency ESR (HF-ESR) and static magnetization techniques). The first studied compounds were mono- and trinuclear Cu(II)-(oxamato, oxamidato)/bis(oxamidato) type compounds. First, all components of the g-tensor and the tensors of onsite ACu and transferred AN HF interactions of mononuclear Cu(II)- bis(oxamidato) compounds have been determined from CW ESR measurements at 10 GHz and at room temperature and pulse ELDOR detected NMR measurements at 35 GHz and at 20 K. The spin density distributions of the mononuclear compounds have been calculated from the experimentally obtained HF tensors. The magnetic exchange constants J of their corresponding trinuclear compounds were determined from susceptibility measurements versus temperature. Our discussion of the spin density distribution of the mononuclear compounds together with the results of the magnetic characterization of their corresponding trinuclear compounds show that the spin population of the mononuclear compounds is in interplay with the J values of their corresponding trinuclear compounds. The second studied compounds were polynuclear Cu(II)-(bis)oxamato compounds with ferrocene and ferrocenium ligands. The magnetic properties of these compounds were studied by susceptibility measurements versus temperature to determine J values. In addition, the ESR technique is used to investigate the magnetic properties of the studied compounds because they contain two different magnetic ions and because only the ESR technique can selectively excite different electron spin species. These studies together with geometries of the ferrocenium ligands determined by crystallographic studies indicate that the magnetic interaction between a central Cu(II) and a Fe(III) ions changed from the antiferromagnetic coupling to the ferromagnetic coupling when a stronger distortion of the axial symmetry in the feroccenium cation exists. Therefore, the degree of the distortion of the feroccenium cation is a control parameter for the sign of the interaction between the central Cu(II) ion and the Fe(III) spins of the studied compounds. The last two studied molecular magnets were a binuclear Ni(II) compound (Ni(II)-dimer) and a cube-like tetranuclear compound with a [Fe4O4]-cube core (Fe4-cube). HF-ESR measurements enabled us to determine the g-factor, the sign, and the absolute value of the magnetic anisotropy parameters. Using this information together with static magnetization measurements, the J value and the magnetic ground state of the studied compounds have been determined. In Ni(II)-dimer, two Ni(II) ions, each having a spin S = 1, are coupled antiferromagnetically that leads to a ground state with total spin Stot = 0. An easy plane magnetic anisotropy with a preferable direction for each Ni(II) ion is found. For Fe4-cube, a ground state with total spin Stot = 8 has been determined. The analysis of the frequency dependence and temperature dependence of HF-ESR lines reveals an easy axis magnetic anisotropy (Dcube = -22 GHz (-1 K)) corresponding to an energy barrier of U = 64 K for the thermal relaxation of the magnetization. These results indicate that Fe4-cube is favorable to show single molecular magnet (SMM) behavior.
3

Magnetic Properties of Molecular and Nanoscale Magnets

Krupskaya, Yulia 20 October 2011 (has links) (PDF)
The idea of miniaturizing devices down to the nanoscale where quantum ffeffects become relevant demands a detailed understanding of the interplay between classical and quantum properties. Therefore, characterization of newly produced nanoscale materials is a very important part of the research in this fifield. Studying structural and magnetic properties of nano- and molecular magnets and the interplay between these properties reveals new interesting effects and suggests ways to control and optimize the respective material. The main task of this thesis is investigating the magnetic properties of molecular magnetic clusters and magnetic nanoparticles recently synthesized by several collaborating groups. This thesis contains two main parts focusing on each of these two topics. In the first part the fundamental studies on novel metal-organic molecular complexes is presented. Several newly synthesized magnetic complexes were investigated by means of different experimental techniques, in particular, by electron spin resonance spectroscopy. Chapter 1 in this part provides the theoretical background which is necessary for the interpretation of the effects observed in single molecular magnetic clusters. Chapter 2 introduces the experimental techniques applied in the studies. Chapter 3 contains the experimental results and their discussion. Firstly, the magnetic properties of two Ni-based complexes are presented. The complexes possess different ligand structures and arrangements of the Ni-ions in the metal cores. This difffference dramatically affffects the magnetic properties of the molecules such as the ground state and the magnetic anisotropy. Secondly, a detailed study of the Mn2Ni3 single molecular magnet is described. The complex has a bistable magnetic ground state with a high spin value of S = 7 and shows slow relaxation and quantum tunnelling of the magnetization. The third section concentrates on a Mn(III)-based single chain magnet showing ferromagnetic ordering of the Mn-spins and a strong magnetic anisotropy which leads to a hysteretic behavior of the magnetization. The last section describes a detailed study of the static and dynamic magnetic properties of three Mn-dimer molecular complexes by means of static magnetization, continuous wave and pulse electron spin resonance measurements. The results indicate a systematic dependence of the magnetic properties on the nearest ligands surrounding of the Mn ions. The second part of the thesis addresses magnetic properties of nano-scaled magnets such as carbon nanotubes fifilled with magnetic materials and carbon-coated magnetic nanoparticles. These studies are eventually aiming at the possible application of these particles as agents for magnetic hyperthermia. In this respect, their behavior in static and alternating magnetic fifields is investigated and discussed. Moreover, two possible hyperthermia applications of the studied magnetic nanoparticles are presented, which are the combination of a hyperthermia agents with an anticancer drug and the possibility to spatially localize the hyperthermia effffect by applying specially designed static magnetic fifields.
4

Magnetic Properties of Molecular and Nanoscale Magnets

Krupskaya, Yulia 18 August 2011 (has links)
The idea of miniaturizing devices down to the nanoscale where quantum ffeffects become relevant demands a detailed understanding of the interplay between classical and quantum properties. Therefore, characterization of newly produced nanoscale materials is a very important part of the research in this fifield. Studying structural and magnetic properties of nano- and molecular magnets and the interplay between these properties reveals new interesting effects and suggests ways to control and optimize the respective material. The main task of this thesis is investigating the magnetic properties of molecular magnetic clusters and magnetic nanoparticles recently synthesized by several collaborating groups. This thesis contains two main parts focusing on each of these two topics. In the first part the fundamental studies on novel metal-organic molecular complexes is presented. Several newly synthesized magnetic complexes were investigated by means of different experimental techniques, in particular, by electron spin resonance spectroscopy. Chapter 1 in this part provides the theoretical background which is necessary for the interpretation of the effects observed in single molecular magnetic clusters. Chapter 2 introduces the experimental techniques applied in the studies. Chapter 3 contains the experimental results and their discussion. Firstly, the magnetic properties of two Ni-based complexes are presented. The complexes possess different ligand structures and arrangements of the Ni-ions in the metal cores. This difffference dramatically affffects the magnetic properties of the molecules such as the ground state and the magnetic anisotropy. Secondly, a detailed study of the Mn2Ni3 single molecular magnet is described. The complex has a bistable magnetic ground state with a high spin value of S = 7 and shows slow relaxation and quantum tunnelling of the magnetization. The third section concentrates on a Mn(III)-based single chain magnet showing ferromagnetic ordering of the Mn-spins and a strong magnetic anisotropy which leads to a hysteretic behavior of the magnetization. The last section describes a detailed study of the static and dynamic magnetic properties of three Mn-dimer molecular complexes by means of static magnetization, continuous wave and pulse electron spin resonance measurements. The results indicate a systematic dependence of the magnetic properties on the nearest ligands surrounding of the Mn ions. The second part of the thesis addresses magnetic properties of nano-scaled magnets such as carbon nanotubes fifilled with magnetic materials and carbon-coated magnetic nanoparticles. These studies are eventually aiming at the possible application of these particles as agents for magnetic hyperthermia. In this respect, their behavior in static and alternating magnetic fifields is investigated and discussed. Moreover, two possible hyperthermia applications of the studied magnetic nanoparticles are presented, which are the combination of a hyperthermia agents with an anticancer drug and the possibility to spatially localize the hyperthermia effffect by applying specially designed static magnetic fifields.

Page generated in 0.0475 seconds