• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • Tagged with
  • 8
  • 8
  • 8
  • 8
  • 8
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theoretical Studies of Epitaxial Bain Paths of Metals

Schönecker, Stephan 12 October 2011 (has links) (PDF)
Epitaxial growth is an important technique for the fabrication of film structures with good crystalline quality, e.g., monoatomic overlayers, multilayers, compound materials, and ordered alloys. Such epitaxially grown films are technologically important materials with, e.g., adjustable electronic, magnetic, and optical properties. In case of coherent or pseudomorphic epitaxy, the overlayer adapts the in-plane lattice parameters of the substrate, i.e., the overlayer is strained to match the lattice parameters parallel to the substrate surface (in-plane directions). Simultaneously, a relaxation of the film dimension perpendicular to the substrate-film interface occurs (out-of-plane direction). Thus, coherent epitaxy provides a method to put phases under strain, and it can stabilise a metastable state of the film material, if the substrate lattice matches this metastable structure. Bulk-like properties in thick overlayers, which adopt the body-centred tetragonal (BCT) crystal structure and which grow coherently on a suitable substrate with quadratic surface symmetry, are modelled by the epitaxial Bain path (EBP) in this thesis. The knowledge of the EBP allows to study properties of the overlayer as function of the substrate lattice parameter. In particular, strain effects on the film material, magnetic order in the overlayer, and the existence of possible metastable states are investigated by means of density functional theory (DFT) in the local spin density approximation (LSDA), and in the singular case of uranium, employing the generalised gradient approximation (GGA). Note that a symmetry property of the BCT structure states, that it is identical to the body-centred cubic (BCC) structure or the face-centred cubic (FCC) structure for definite ratios of the tetragonal lattice parameters. Our definition of the EBP has two, previously not considered consequences for EBPs in general: an EBP can be discontinuous, and the high symmetry cubic structures (FCC and BCC) need not be points on the EBP. Both cases occurred for several elements considered in this thesis. If, however, a cubic structure is a point on the EBP, then a symmetry property guarantees that the total energy along the EBP, E(a), is stationary at this cubic structure. We computed the EBPs of all transition metals (TMs), the post TMs Zn, Cd, and Hg, the alkaline earth metals Ca, Sr, and Ba, the lanthanides La and Lu, and the actinide U (35 elements were treated in total). For each element but Zr, Hg, and U, there are exactly two structures whose energies are minima on the EBP, and which exhibit neither in-plane nor out-of-plane stresses; for Zr, Hg, and U there are three minima each. All other states on the EBP exhibit in-plane stresses because they are a strained form of the stress-free structures. The possibility of metastability of these particular, stress-free structures, i.e., stabilisation of these structures without bonding to the substrate, was investigated by stability conditions based on linear elasticity theory (except for U). We predict that ten FCC structures and three BCT structures not known from the respective phase diagrams may be metastable. We studied the properties of ferromagnetic (FM) states on the EBP for the elements Fe, Co, and Ni, and moreover predict, that Mn, Ru, Os, and U order ferromagnetically for certain states of the EBP. The latter three elements are paramagnetic in their ground states. The onset of ferromagnetism in Os and U is not accompanied by a simultaneously fulfilled Stoner criterion. According to our results, antiferromagnetic order (with moment sequences up-down or up-up-down-down on successive (001) planes) is never more stable than FM order on any EBP for any element investigated. On the basis of our comprehensive results for all TMs, we analysed trends across each of the three TM series and similarities among the three series. We demonstrate, that the type of the EBP (a classification of extrema of E(a) by symmetry into types) follows a characteristic trend across each of the three TM series. We discuss exceptions (Mn, Fe, and Zr) to this trend. Another trend, identical for the three series, is found for the BCT­-FCC structural energy difference as function of the d-band filling (evaluated for BCT structures that define extrema of E(a)), which follows a similar trend as the well studied BCC­-FCC structural energy difference. Clear similarities among the three periods of elements are also reflected in the bulk moduli and in the elastic constants of the cubic or tetragonal structures, that define the global and local minima of E(a). The mentioned similarities suggest, that many properties which are associated with the EBPs of TMs, can be attributed to the occupation of the d-band, which is the most dominant feature of the electronic structure of TMs.
2

Theoretical Studies of Epitaxial Bain Paths of Metals

Schönecker, Stephan 23 August 2011 (has links)
Epitaxial growth is an important technique for the fabrication of film structures with good crystalline quality, e.g., monoatomic overlayers, multilayers, compound materials, and ordered alloys. Such epitaxially grown films are technologically important materials with, e.g., adjustable electronic, magnetic, and optical properties. In case of coherent or pseudomorphic epitaxy, the overlayer adapts the in-plane lattice parameters of the substrate, i.e., the overlayer is strained to match the lattice parameters parallel to the substrate surface (in-plane directions). Simultaneously, a relaxation of the film dimension perpendicular to the substrate-film interface occurs (out-of-plane direction). Thus, coherent epitaxy provides a method to put phases under strain, and it can stabilise a metastable state of the film material, if the substrate lattice matches this metastable structure. Bulk-like properties in thick overlayers, which adopt the body-centred tetragonal (BCT) crystal structure and which grow coherently on a suitable substrate with quadratic surface symmetry, are modelled by the epitaxial Bain path (EBP) in this thesis. The knowledge of the EBP allows to study properties of the overlayer as function of the substrate lattice parameter. In particular, strain effects on the film material, magnetic order in the overlayer, and the existence of possible metastable states are investigated by means of density functional theory (DFT) in the local spin density approximation (LSDA), and in the singular case of uranium, employing the generalised gradient approximation (GGA). Note that a symmetry property of the BCT structure states, that it is identical to the body-centred cubic (BCC) structure or the face-centred cubic (FCC) structure for definite ratios of the tetragonal lattice parameters. Our definition of the EBP has two, previously not considered consequences for EBPs in general: an EBP can be discontinuous, and the high symmetry cubic structures (FCC and BCC) need not be points on the EBP. Both cases occurred for several elements considered in this thesis. If, however, a cubic structure is a point on the EBP, then a symmetry property guarantees that the total energy along the EBP, E(a), is stationary at this cubic structure. We computed the EBPs of all transition metals (TMs), the post TMs Zn, Cd, and Hg, the alkaline earth metals Ca, Sr, and Ba, the lanthanides La and Lu, and the actinide U (35 elements were treated in total). For each element but Zr, Hg, and U, there are exactly two structures whose energies are minima on the EBP, and which exhibit neither in-plane nor out-of-plane stresses; for Zr, Hg, and U there are three minima each. All other states on the EBP exhibit in-plane stresses because they are a strained form of the stress-free structures. The possibility of metastability of these particular, stress-free structures, i.e., stabilisation of these structures without bonding to the substrate, was investigated by stability conditions based on linear elasticity theory (except for U). We predict that ten FCC structures and three BCT structures not known from the respective phase diagrams may be metastable. We studied the properties of ferromagnetic (FM) states on the EBP for the elements Fe, Co, and Ni, and moreover predict, that Mn, Ru, Os, and U order ferromagnetically for certain states of the EBP. The latter three elements are paramagnetic in their ground states. The onset of ferromagnetism in Os and U is not accompanied by a simultaneously fulfilled Stoner criterion. According to our results, antiferromagnetic order (with moment sequences up-down or up-up-down-down on successive (001) planes) is never more stable than FM order on any EBP for any element investigated. On the basis of our comprehensive results for all TMs, we analysed trends across each of the three TM series and similarities among the three series. We demonstrate, that the type of the EBP (a classification of extrema of E(a) by symmetry into types) follows a characteristic trend across each of the three TM series. We discuss exceptions (Mn, Fe, and Zr) to this trend. Another trend, identical for the three series, is found for the BCT­-FCC structural energy difference as function of the d-band filling (evaluated for BCT structures that define extrema of E(a)), which follows a similar trend as the well studied BCC­-FCC structural energy difference. Clear similarities among the three periods of elements are also reflected in the bulk moduli and in the elastic constants of the cubic or tetragonal structures, that define the global and local minima of E(a). The mentioned similarities suggest, that many properties which are associated with the EBPs of TMs, can be attributed to the occupation of the d-band, which is the most dominant feature of the electronic structure of TMs.
3

On the electronic phase diagram of Ba1-xKx(Fe1-yCoy)2As2 and EuFe2(As1-xPx)2 superconductors

Goltz, Til 12 January 2016 (has links) (PDF)
In this thesis, I study the electronic and structural phase diagrams of the superconducting 122 iron pnictides systems Ba1-xKx(Fe1-yCoy)2As2 and EuFe2(As1-xPx)2 by means of the local probe techniques 57Fe Mössbauer spectroscopy (MS) and muon spin relaxation (muSR). For both isovalent substitution strategies - Co/K for Fe/Ba and P for As, respectively - the antiferromagnetic Fe ordering and orthorhombic distortion of the parent compounds BaFe2As2 and EuFe2As2 are subsequently suppressed with increasing chemical substitution and superconductivity arises, once long-range and coherent Fe magnetic order is sufficiently but not entirely suppressed. For Ba1-xKx(Fe1-yCoy)2As2 in the charge compensated state (x/2=y), a remarkably similar suppression of both, the orthorhombic distortion and Fe magnetic ordering, as a function of increasing substitution is observed and a linear relationship between the structural and the magnetic order parameter is found. Superconductivity is evidenced at intermediate substitution with a maximum Tsc of 15 K coexisting with static magnetic order on a microscopic length scale. The appearance of superconductivity within the antiferromagnetic state can by explained by the introduction of disorder due to nonmagnetic impurities to a system with a constant charge carrier density. Within this model, the experimental findings are compatible with the predicted s± pairing symmetry. For EuFe2(As1-xPx)2, the results from 57Fe MS and ZF-muSR reveal an intriguing interplay of the local Eu 2+ magnetic moments and the itinerant magnetic Fe moments due to the competing structures of the iron and europium magnetic subsystems. For the investigated single crystals with x=0.19 and 0.28, 57Fe MS evidences the interplay of Fe and Eu magnetism by the observation of a transferred hyperfine field below Tafm at which the Eu subsystem orders into a canted A-type AFM magnetic structure. Furthermore, an additional temperature dependent out-of-plane tilting of the static Fe hyperfine field is observed below the onset of static Eu ordering. ZF-muSR shows a strong increase of the local field at the muon site below Tafm=20 K and a crossover from isotropic to anisotropic Eu spin-dynamics between 30 and 10 K. The temperature dependence of the spin dynamics, as derived from the muSR dynamic relaxation rates, are related to a critical slowing down of Eu-spin fluctuations which extends to even much higher temperatures (~100 K). They also effect the experimental linewidth observed in the 57Fe MS experiments. The strong influence of the Eu magnetic order onto the primary observables in both methods prevents conclusive interpretation of the experimental data with respect to a putative interplay of Fe magnetism and superconductivity.
4

Electronic phase diagrams and competing ground states of complex iron pnictides and chalcogenides

Kamusella, Sirko 29 March 2017 (has links) (PDF)
In this thesis the superconducting and magnetic phases of LiOH(Fe,Co)(Se,S), CuFeAs/CuFeSb, and LaFeP_1-xAs_xO - belonging to the 11, 111 and 1111 structural classes of iron-based arsenides and chalcogenides - are investigated by means of 57Fe Mössbauer spectroscopy and muon spin rotation/relaxation (μSR). Of major importance in this study is the application of high magnetic fields in Mössbauer spectroscopy to distinguish and characterize ferro- (FM) and antiferromagnetic (AFM) order. A user-friendly Mössbauer data analysis program was developed to provide suitable model functions not only for high field spectra, but relaxation spectra or parameter distributions in general. In LaFeP_1-xAs_xO the reconstruction of the Fermi surface is described by the vanishing of the Γ hole pocket with decreasing x. The continuous change of the orbital character and the covalency of the d-electrons is shown by Mössbauer spectroscopy. A novel antiferromagnetic phase with small magnetic moments of ~ 0.1 μ_B state is characterized. The superconducting order parameter is proven to continuously change from a nodal to a fully gapped s-wave like Fermi surface in the superconducting regime as a function of x, partially investigated on (O,F) substituted samples. LiOHFeSe is one of the novel intercalated FeSe compounds, showing strongly increased T_C = 43 K mainly due to increased interlayer spacing and resulting two-dimensionality of the Fermi surface. The primary interest of the samples of this thesis is the simultaneously observed ferromagnetism and superconductivity. The local probe techniques prove that superconducting sample volume gets replaced by ferromagnetic volume. Ferromagnetism arises from magnetic order with T_C = 10 K of secondary iron in the interlayer. The tendency of this system to show (Li,Fe) disorder is preserved upon (Se,S) substitution. However, superconductivity gets suppressed. The results of Mössbauer spectroscopy indicate that the systems tends to a secondary structural phase, where the local iron environment observed in pure FeS is absent. Moreover, two interlayer positions of the iron are identified. The absence of enhanced superconducting T_C in LiOHFeS thus is related to a structural instability. Also, in CuFeAs the role of secondary iron at the Cu position turns out to be decisive for the observed magnetic behaviour. As in LiOHFeSe, it orders ferromagnetically at T_C ~ 11 K and superimposes with the magnetic instability of the main iron site. It is shown that a small charge doping of 0.1e/Fe, which is expected from (Cu,Fe) disorder, is sufficient to switch the system between a paramagnetic and an AFM ground state. Both magnetic orders are indistinguishable, because the magnetic order parameters are strongly coupled. This coupling was observed in the structurally identical CuFeSb, where the magnetic order parameters of both iron sites scale perfectly. The magnetically unstable CuFeAs and the ferromagnetic CuFeSb can be classified according to the theory of As height driven magnetism, predicting a change from paramagnetism to AFM and finally FM with increasing As height.
5

On the electronic phase diagram of Ba1-xKx(Fe1-yCoy)2As2 and EuFe2(As1-xPx)2 superconductors: A local probe study using Mössbauer spectroscopy and Muon Spin Relaxation

Goltz, Til 28 October 2015 (has links)
In this thesis, I study the electronic and structural phase diagrams of the superconducting 122 iron pnictides systems Ba1-xKx(Fe1-yCoy)2As2 and EuFe2(As1-xPx)2 by means of the local probe techniques 57Fe Mössbauer spectroscopy (MS) and muon spin relaxation (muSR). For both isovalent substitution strategies - Co/K for Fe/Ba and P for As, respectively - the antiferromagnetic Fe ordering and orthorhombic distortion of the parent compounds BaFe2As2 and EuFe2As2 are subsequently suppressed with increasing chemical substitution and superconductivity arises, once long-range and coherent Fe magnetic order is sufficiently but not entirely suppressed. For Ba1-xKx(Fe1-yCoy)2As2 in the charge compensated state (x/2=y), a remarkably similar suppression of both, the orthorhombic distortion and Fe magnetic ordering, as a function of increasing substitution is observed and a linear relationship between the structural and the magnetic order parameter is found. Superconductivity is evidenced at intermediate substitution with a maximum Tsc of 15 K coexisting with static magnetic order on a microscopic length scale. The appearance of superconductivity within the antiferromagnetic state can by explained by the introduction of disorder due to nonmagnetic impurities to a system with a constant charge carrier density. Within this model, the experimental findings are compatible with the predicted s± pairing symmetry. For EuFe2(As1-xPx)2, the results from 57Fe MS and ZF-muSR reveal an intriguing interplay of the local Eu 2+ magnetic moments and the itinerant magnetic Fe moments due to the competing structures of the iron and europium magnetic subsystems. For the investigated single crystals with x=0.19 and 0.28, 57Fe MS evidences the interplay of Fe and Eu magnetism by the observation of a transferred hyperfine field below Tafm at which the Eu subsystem orders into a canted A-type AFM magnetic structure. Furthermore, an additional temperature dependent out-of-plane tilting of the static Fe hyperfine field is observed below the onset of static Eu ordering. ZF-muSR shows a strong increase of the local field at the muon site below Tafm=20 K and a crossover from isotropic to anisotropic Eu spin-dynamics between 30 and 10 K. The temperature dependence of the spin dynamics, as derived from the muSR dynamic relaxation rates, are related to a critical slowing down of Eu-spin fluctuations which extends to even much higher temperatures (~100 K). They also effect the experimental linewidth observed in the 57Fe MS experiments. The strong influence of the Eu magnetic order onto the primary observables in both methods prevents conclusive interpretation of the experimental data with respect to a putative interplay of Fe magnetism and superconductivity.
6

Electronic phase diagrams and competing ground states of complex iron pnictides and chalcogenides: A Mössbauer spectroscopy and muon spin rotation/relaxation study

Kamusella, Sirko 01 March 2017 (has links)
In this thesis the superconducting and magnetic phases of LiOH(Fe,Co)(Se,S), CuFeAs/CuFeSb, and LaFeP_1-xAs_xO - belonging to the 11, 111 and 1111 structural classes of iron-based arsenides and chalcogenides - are investigated by means of 57Fe Mössbauer spectroscopy and muon spin rotation/relaxation (μSR). Of major importance in this study is the application of high magnetic fields in Mössbauer spectroscopy to distinguish and characterize ferro- (FM) and antiferromagnetic (AFM) order. A user-friendly Mössbauer data analysis program was developed to provide suitable model functions not only for high field spectra, but relaxation spectra or parameter distributions in general. In LaFeP_1-xAs_xO the reconstruction of the Fermi surface is described by the vanishing of the Γ hole pocket with decreasing x. The continuous change of the orbital character and the covalency of the d-electrons is shown by Mössbauer spectroscopy. A novel antiferromagnetic phase with small magnetic moments of ~ 0.1 μ_B state is characterized. The superconducting order parameter is proven to continuously change from a nodal to a fully gapped s-wave like Fermi surface in the superconducting regime as a function of x, partially investigated on (O,F) substituted samples. LiOHFeSe is one of the novel intercalated FeSe compounds, showing strongly increased T_C = 43 K mainly due to increased interlayer spacing and resulting two-dimensionality of the Fermi surface. The primary interest of the samples of this thesis is the simultaneously observed ferromagnetism and superconductivity. The local probe techniques prove that superconducting sample volume gets replaced by ferromagnetic volume. Ferromagnetism arises from magnetic order with T_C = 10 K of secondary iron in the interlayer. The tendency of this system to show (Li,Fe) disorder is preserved upon (Se,S) substitution. However, superconductivity gets suppressed. The results of Mössbauer spectroscopy indicate that the systems tends to a secondary structural phase, where the local iron environment observed in pure FeS is absent. Moreover, two interlayer positions of the iron are identified. The absence of enhanced superconducting T_C in LiOHFeS thus is related to a structural instability. Also, in CuFeAs the role of secondary iron at the Cu position turns out to be decisive for the observed magnetic behaviour. As in LiOHFeSe, it orders ferromagnetically at T_C ~ 11 K and superimposes with the magnetic instability of the main iron site. It is shown that a small charge doping of 0.1e/Fe, which is expected from (Cu,Fe) disorder, is sufficient to switch the system between a paramagnetic and an AFM ground state. Both magnetic orders are indistinguishable, because the magnetic order parameters are strongly coupled. This coupling was observed in the structurally identical CuFeSb, where the magnetic order parameters of both iron sites scale perfectly. The magnetically unstable CuFeAs and the ferromagnetic CuFeSb can be classified according to the theory of As height driven magnetism, predicting a change from paramagnetism to AFM and finally FM with increasing As height.:1 Acronyms and Symbols 2 Introduction 3 Iron-based arsenides and chalcogenides 3.1 Structural properties 3.2 Electronic properties 3.2.1 Magnetism 3.2.2 Superconductivity 3.2.3 Nematic phase 3.3 Investigated samples 4 Moessfit - a free Mössbauer fitting program 4.1 Aspects of program design 4.2 Errors 4.2.1 Uncorrelated 4.2.2 Hesse 4.2.3 MonteCarlo 4.2.4 Minos 4.3 Fitting algorithm 4.4 Maximum entropy method (MEM) 4.5 Kolmogorov-Smirnov confidence 5 Mössbauer spectroscopy 5.1 Mössbauer effect 5.2 Relativistic Doppler effect 5.3 Full static Hamiltonian 5.3.1 Quadrupole interaction 5.3.2 Isomer shift. 5.3.3 Zeeman splitting 5.3.4 Combined interaction 5.3.5 Transition probabilities 5.3.6 The magic angle 5.4 Transmission integral 5.4.1 Absorption area 5.4.2 Ideal thickness 5.4.3 Line width and line shape 5.4.4 Levelling 5.5 Applied field measurements of powder samples 5.5.1 Paramagnet, axial symmetric EFG in transverse field geometry 6 5.5.2 Uniaxial antiferromagnet, axial symmetric EFG in transverse field geometry 6 5.5.3 Paramagnet, axial symmetric EFG in longitudinal field geometry 6 5.5.4 Uniaxial ferromagnet, axial symmetric EFG in transverse field geometry 6 5.5.5 Polarised photons 5.5.6 Total absorption cross section 5.5.7 Polarised sources 5.6 Blume line shape model 6 μSR 6.1 Muon decay and detection 6.2 Magnetic order and dynamic relaxation 6.2.1 Magnetic order 6.2.2 Time dependent field distributions 6.2.3 Aspects of μSR in iron-based arsenides and chalcogenides 6.2.4 Weak transverse field (WTF) 6.3 Superconductivity - transverse field (TF) experiments 7 Intercalated FeSe 7.1 Bulk properties: XRD, susceptibility, resistivity 7.2 Structural characterization 7.3 LiOHFeSe - Mössbauer spectroscopy 7.3.1 Applied transverse field 7.4 LiOHFeSe - μSR 7.4.1 Zero field (ZF) 7.4.2 Pinning experiment 7.4.3 Transverse field (TF) 7.5 Mössbauer investigation of LiOHFe_1-yCo_ySe_1-xS_x. 7.6 Discussion 8 LaFeO(As,P) 8.1 Preliminary measurements and electronic structure calculations 8.2 Mössbauer spectroscopy 8.3 μSR 8.3.1 Magnetic characterization 8.3.2 Spin dynamics 8.3.3 Superconductivity 8.4 Discussion 9 CuFeAs and CuFeSb 9.1 Preliminary results of CuFeAs and CuFeSb 9.2 CuFeAs: Mössbauer spectroscopy 9.2.1 Zero field (ZF) 9.2.2 Longitudinal field (LF) 9.2.3 Transverse field (TF) 9.3 CuFeAs: μSR 9.3.1 Zero field (ZF) 9.3.2 Weak transverse field (WTF) 9.4 Further investigations on CuFeAs 9.4.1 Neutron scattering 9.4.2 Theoretical calculation 9.4.3 Local element analysis with EDX/WDX 9.5 CuFeSb: Mössbauer spectroscopy 9.5.1 Zero Field (ZF) 9.5.2 Transverse field (TF) 9.6 Discussion 10 Conclusion 11 Appendix 11.1 Derivation of the quadrupole interaction and isomer shift 11.2 Matrix form of the static nuclear Hamiltonian 11.3 Mössbauer line intensities 11.4 Blume line shape model 11.4.1 Special case: two states with diagonal Hamiltonians 11.5 Moessfit models 11.5.1 FeSe_1-xS_x(Li_1-zFe_zOH) ZF, standard 11.5.2 FeSe_1-xS_x(Li_1-zFe_zOH) ZF, 4 fractions 11.5.3 FeSe_1-xS_x(Li_1-zFe_zOH) Pinning 11.5.4 FeSe_1-xS_x(Li_1-zFe_zOH) TF 11.5.5 FeSe_1-xS_x(Li_1-zFe_zOH) CS-Vzz-MEM 11.5.6 LaFeP_1-xAs_x+ ferrocene, ZF 11.5.7 LaFeP_1-xAs_x+ ferrocene, LF 11.5.8 LaFeP_1-xAs_x+ iron foil, ZF 11.5.9 LaFeAsO ZF 11.5.10 LaFeAsO TF 11.5.11 CuFeAs + ferrocen, ZF 11.5.12 CuFeAs + ferrocen, ZF, high statistics 11.5.13 CuFeAs + ferrocen, LF 11.5.14 CuFeAs + ferrocen, TF 11.5.15 CuFeSb ZF 11.5.16 CuFeSb TF
7

Microscopic description of magnetic model compounds

Schmitt, Miriam 24 June 2013 (has links) (PDF)
Solid state physics comprises many interesting physical phenomena driven by the complex interplay of the crystal structure, magnetic and orbital degrees of freedom, quantum fluctuations and correlation. The discovery of materials which exhibit exotic phenomena like low dimensional magnetism, superconductivity, thermoelectricity or multiferroic behavior leads to various applications which even directly influence our daily live. For such technical applications and the purposive modification of materials, the understanding of the underlying mechanisms in solids is a precondition. Nowadays DFT based band structure programs become broadly available with the possibility to calculate systems with several hundreds of atoms in reasonable time scales and high accuracy using standard computers due to the rapid technical and conceptional development in the last decades. These improvements allow to study physical properties of solids from their crystal structure and support the search for underlying mechanisms of different phenomena from microscopic grounds. This thesis focuses on the theoretical description of low dimensional magnets and intermetallic compounds. We combine DFT based electronic structure and model calculations to develop the magnetic properties of the compounds from microscopic grounds. The developed, intuitive pictures were challenged by model simulations with various experiments, probing microscopic and macroscopic properties, such as thermodynamic measurements, high field magnetization, nuclear magnetic resonance or electron spin resonance experiments. This combined approach allows to investigate the close interplay of the crystal structure and the magnetic properties of complex materials in close collaboration with experimentalists. In turn, the systematic variation of intrinsic parameters by substitution or of extrinsic factors, like magnetic field, temperature or pressure is an efficient way to probe the derived models. Especially pressure allows a continuous change of the crystal structure on a rather large energy scale without the chemical complexity of substitution, thus being an ideal tool to consistently alter the electronic structure in a controlled way. Our theoretical results not only provide reliable descriptions of real materials, exhibiting disorder, partial site occupation and/or strong correlations, but also predict fascinating phenomena upon extreme conditions. In parts this theoretical predictions were already confirmed by own experiments on large scale facilities. Whereas in the first part of this work the main purpose was to develop reliable magnetic models of low dimensional magnets, in the second part we unraveled the underlying mechanism for different phase transitions upon pressure. In more detail, the first part of this thesis is focused on the magnetic ground states of spin 1/2 transition metal compounds which show fascinating phase diagrams with many unusual ground states, including various types of magnetic order, like helical states exhibiting different pitch angles, driven by the intimate interplay of structural details and quantum fluctuations. The exact arrangement and the connection of the magnetically active building blocks within these materials determine the hybridization, orbital occupation, and orbital orientation, this way altering the exchange paths and strengths of magnetic interaction within the system and consequently being crucial for the formation of the respective ground states. The spin 1/2 transition metal compounds, which have been investigated in this work, illustrate the great variety of exciting phenomena fueling the huge interest in this class of materials. We focused on cuprates with magnetically active CuO4 plaquettes, mainly arranged into edge sharing geometries. The influence of structural peculiarities, as distortion, folding, changed bonding angles, substitution or exchanged ligands has been studied with respect to their relevance for the magnetic ground state. Besides the detailed description of the magnetic ground states of selected compounds, we attempted to unravel the origin for the formation of a particular magnetic ground state by deriving general trends and relations for this class of compounds. The details of the treatment of the correlation and influence of structural peculiarities like distortion or the bond angles are evaluated carefully. In the second part of this work we presented the results of joint theoretical and experimental studies for intermetallic compounds, all exhibiting an isostructural phase transition upon pressure. Many different driving forces for such phase transitions are known like quantum fluctuations, valence instabilities or magnetic ordering. The combination of extensive computational studies and high pressure XRD, XAS and XMCD experiments using synchrotron radiation reveals completely different underlying mechanism for the onset of the phase transitions in YCo5, SrFe2As2 and EuPd3Bx. This thesis demonstrates on a series of complex compounds that the combination of ab-initio electronic structure calculations with numerical simulations and with various experimental techniques is an extremely powerful tool for a successful description of the intriguing quantum phenomena in solids. This approach is able to reduce the complex behavior of real materials to simple but appropriate models, this way providing a deep understanding for the underlying mechanisms and an intuitive picture for many phenomena. In addition, the close interaction of theory and experiment stimulates the improvement and refinement of the methods in both areas, pioneering the grounds for more and more precise descriptions. Further pushing the limits of these mighty techniques will not only be a precondition for the success of fundamental research at the frontier between physics and chemistry, but also enables an advanced material design on computational grounds.
8

Microscopic description of magnetic model compounds: from one-dimensional magnetic insulators to three-dimensional itinerant metals

Schmitt, Miriam 22 November 2012 (has links)
Solid state physics comprises many interesting physical phenomena driven by the complex interplay of the crystal structure, magnetic and orbital degrees of freedom, quantum fluctuations and correlation. The discovery of materials which exhibit exotic phenomena like low dimensional magnetism, superconductivity, thermoelectricity or multiferroic behavior leads to various applications which even directly influence our daily live. For such technical applications and the purposive modification of materials, the understanding of the underlying mechanisms in solids is a precondition. Nowadays DFT based band structure programs become broadly available with the possibility to calculate systems with several hundreds of atoms in reasonable time scales and high accuracy using standard computers due to the rapid technical and conceptional development in the last decades. These improvements allow to study physical properties of solids from their crystal structure and support the search for underlying mechanisms of different phenomena from microscopic grounds. This thesis focuses on the theoretical description of low dimensional magnets and intermetallic compounds. We combine DFT based electronic structure and model calculations to develop the magnetic properties of the compounds from microscopic grounds. The developed, intuitive pictures were challenged by model simulations with various experiments, probing microscopic and macroscopic properties, such as thermodynamic measurements, high field magnetization, nuclear magnetic resonance or electron spin resonance experiments. This combined approach allows to investigate the close interplay of the crystal structure and the magnetic properties of complex materials in close collaboration with experimentalists. In turn, the systematic variation of intrinsic parameters by substitution or of extrinsic factors, like magnetic field, temperature or pressure is an efficient way to probe the derived models. Especially pressure allows a continuous change of the crystal structure on a rather large energy scale without the chemical complexity of substitution, thus being an ideal tool to consistently alter the electronic structure in a controlled way. Our theoretical results not only provide reliable descriptions of real materials, exhibiting disorder, partial site occupation and/or strong correlations, but also predict fascinating phenomena upon extreme conditions. In parts this theoretical predictions were already confirmed by own experiments on large scale facilities. Whereas in the first part of this work the main purpose was to develop reliable magnetic models of low dimensional magnets, in the second part we unraveled the underlying mechanism for different phase transitions upon pressure. In more detail, the first part of this thesis is focused on the magnetic ground states of spin 1/2 transition metal compounds which show fascinating phase diagrams with many unusual ground states, including various types of magnetic order, like helical states exhibiting different pitch angles, driven by the intimate interplay of structural details and quantum fluctuations. The exact arrangement and the connection of the magnetically active building blocks within these materials determine the hybridization, orbital occupation, and orbital orientation, this way altering the exchange paths and strengths of magnetic interaction within the system and consequently being crucial for the formation of the respective ground states. The spin 1/2 transition metal compounds, which have been investigated in this work, illustrate the great variety of exciting phenomena fueling the huge interest in this class of materials. We focused on cuprates with magnetically active CuO4 plaquettes, mainly arranged into edge sharing geometries. The influence of structural peculiarities, as distortion, folding, changed bonding angles, substitution or exchanged ligands has been studied with respect to their relevance for the magnetic ground state. Besides the detailed description of the magnetic ground states of selected compounds, we attempted to unravel the origin for the formation of a particular magnetic ground state by deriving general trends and relations for this class of compounds. The details of the treatment of the correlation and influence of structural peculiarities like distortion or the bond angles are evaluated carefully. In the second part of this work we presented the results of joint theoretical and experimental studies for intermetallic compounds, all exhibiting an isostructural phase transition upon pressure. Many different driving forces for such phase transitions are known like quantum fluctuations, valence instabilities or magnetic ordering. The combination of extensive computational studies and high pressure XRD, XAS and XMCD experiments using synchrotron radiation reveals completely different underlying mechanism for the onset of the phase transitions in YCo5, SrFe2As2 and EuPd3Bx. This thesis demonstrates on a series of complex compounds that the combination of ab-initio electronic structure calculations with numerical simulations and with various experimental techniques is an extremely powerful tool for a successful description of the intriguing quantum phenomena in solids. This approach is able to reduce the complex behavior of real materials to simple but appropriate models, this way providing a deep understanding for the underlying mechanisms and an intuitive picture for many phenomena. In addition, the close interaction of theory and experiment stimulates the improvement and refinement of the methods in both areas, pioneering the grounds for more and more precise descriptions. Further pushing the limits of these mighty techniques will not only be a precondition for the success of fundamental research at the frontier between physics and chemistry, but also enables an advanced material design on computational grounds.:Contents List of abbreviations 1. Introduction 2. Methods 2.1. Electronic structure and magnetic models for real compounds 2.1.1. Describing a solid 2.1.2. Basic exchange and correlation functionals 2.1.3. Strong correlations 2.1.4. Band structure codes 2.1.5. Disorder and vacancies 2.1.6. Models on top of DFT 2.2. X-ray diffraction and x-ray absorption at extreme conditions 2.2.1. Diamond anvil cells 2.2.2. ID09 - XRD under pressure 2.2.3. ID24 - XAS and XMCD under pressure 3. Low dimensional magnets 3.1. Materials 3.1.1 AgCuVO4 - a model compound between two archetypes of Cu-O chains 3.1.2 Li2ZrCuO4 - in close vicinity to a quantum critical point 3.1.3 PbCuSO4(OH)2 -magnetic exchange ruled by H 3.1.4 CuCl2 and CuBr2 - flipping magnetic orbitals by crystal water 3.1.5 Na3Cu2SbO6 and Na2Cu2TeO6 - alternating chain systems 3.1.6 Cu2(PO3)2CH2 - magnetic vs. structural dimers 3.1.7 Cu2PO4OH - orbital order between dimers and chains 3.1.8 A2CuEO6 - an new family of spin 1/2 square lattice compounds 3.2. General trends and relations 3.2.1. Approximation for the treatment of strong correlation 3.2.2. Structural elements 4. Magnetic intermetallic compounds under extreme conditions 115 4.1. Itinerant magnets 4.1.1. YCo5 - a direct proof for a magneto elastic transition by XMCD 4.1.2. SrFe2As2 - symmetry-preserving lattice collapse 4.2. Localized magnets 4.2.1. EuPd3Bx - valence transition under doping and pressure 5. Summary and outlook A. Technical details B. Crystal Structures C. Supporting Material Bibliography List of Publications Acknowledgments

Page generated in 0.1123 seconds