• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of the Superconducting and Magnetic Phase Diagram of Off-Stoichiometric LiFeAs

Gräfe, Uwe 26 March 2018 (has links) (PDF)
At their discovery in 2008, iron pnictide superconductors (IPS) provoked tremendous scientific interest, comparable to the discovery of the cuprate superconductors. So far, IPS reached critical temperatures T c up to 56K. Typically, they show an antiferromagnetic (afm) spin density wave (SDW) which has to be suppressed by doping before superconductivity develops, which then is supported by further doping. Due to the close vicinity of the magnetic and the superconducting (sc) phase, magnetic fluctuations are discussed to be responsible for the sc pairing mechanism in IPS. A special member of the IPS is LiFeAs, because it does not need doping to become sc. It is a stoichiometric superconductor at a T c of 18K. In fact, doping is suppressing its T c . Also, there is no sign of an afm SDW present. Therefore, LiFeAs is a interesting material to study the properties of the IPS in an undisturbed material. In 2010, experiments of the Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden) revealed further surprising properties of LiFeAs. Samples with a Li deficiency undergo a ferromagnetic (fm) phase transition at 165K. Theoretical calculations suggest that fm fluctuations could induce triplet superconductivity in LiFeAs. This would cause a nonvanishing dynamic susceptibility below T c , which is supported by nuclear magnetic resonance (NMR) experiments. This thesis is discussing the results of the IFW Dresden experiments, and concludes that this ferromagnetism is of weak itinerant nature. The origin might be an increase of the density of states (DOS) at the Fermi level, which is causing an instability towards fm order, as proposed by the Stoner model. For further doping experiments, the synthesis procedure of polycrystalline LiFeAs was optimized to get samples with maximum T c and minimum impurities. Therefore, nuclear quadrupole resonance (NQR) was used. The NQR line width is a measure of impurities in the sample. By minimizing the NQR line width, optimal samples were synthesized. These samples are able to compete with the properties of single crystals. To investigate the doping behavior of LiFeAs, a scenario with four different kinds of impurities and deficiencies was performed with the optimized synthesis procedure. 24 different samples were analyzed, by means of NQR and electrical conductivity. It was found that in fact Fe excess is responsible for changing the physical properties of LiFeAs, and not Li deficiency. It is causing a shrinking of the unit cell volume, as seen by X-ray diffraction (XRD) measurements and it causes a decrease of T c . It also leads to a decrease of room temperature resistivity, which is supporting an increase of the DOS at the Fermi level. The NQR frequency is scaling with the amount of Fe excess and can be used to draw the sc and fm phase diagram of off-stoichiometric LiFeAs. At an amount between 3.2 and 3.6% o f Fe excess LiFeAs undergoes the fm transition.
2

Neue Schichtarchitekturen Fe-basierter Supraleiter: Epitaktische Ba(Fe1-xNix)2As2 Düunnschichten und aufgerollte FeSe1-xTex Mikrostrukturen

Richter, Stefan 14 September 2018 (has links)
Ziel dieser Arbeit war die Untersuchung des Einflusses epitaktischer Verspannung auf die Eigenschaften von dünnen Schichten eisenbasierter Supraleiter. Dafür wurden erstmalig epitaktische Schichten des Materials Ba(Fe1−xNix)2As2 mit unterschiedlichem Nickelgehalt mithilfe der gepulsten Laserdeposition hergestellt und ihre strukturellen und elektrischen Transporteigenschaften charakterisiert. Die Ergebnisse wurden mit Massivproben, sowie mit Dünnschichten des verwandten Systems Ba(Fe1−xCox)2As2 verglichen. Dabei wurde ein maximales Tc von 21,6K gemessen, was die entsprechenden Werte für Massivproben dieses Materials übersteigt. Je nach verwendetem Substrat führt die induzierte stauchende oder dehnende mechanische Verspannung zu einer Verschiebung des elektronischen Phasendiagrammes. Die Wechselwirkung mit magnetischen Fluktuationen nahe des antiferromagnetischen Phasenübergangs führt zudem in Dünnschichten zu einer starken Erhöhung des Anstieges des oberen kritischen Magnetfeldes nahe der Sprungtemperatur. Untersuchungen des magnetischen Phasendiagrammes in hohen Magnetfeldern zeigen für Ba(Fe1−xNix)2As2 ein ähnliches Verhalten wie im Co-dotierten System. Die Messungen ergaben bei niedrigen Temperaturen eine geringe Anisotropie des oberen kritischen Feldes, während die Anisotropie des Irreversibilitätsfeldes aufgrund der vorherrschenden Defektstruktur erhöht ist. Des Weiteren wurden epitaktische Dünnschichten des Supraleiters FeSe1−xTex erstmalig auf dem Halbleitersubstrat GaAs abgeschieden. Dabei wurden Sprungtemperaturen von bis zu 17,4K erreicht. Das Wachstum auf speziellen mehrlagigen GaAs-Architekturen ermöglichte zudem die Realisierung dreidimensionaler Mikroobjekte, bei denen sich die Dünnschicht aufgrund von Relaxation epitaktischer Verspannung des Substrates zu Helices aufrollt. Mechanische Defekte führten jedoch dazu, dass keine supraleitenden Eigenschaften gemessen werden konnten. In diesem Fall ist eine weitere Optimierung der Mikrostrukturierungsprozesse notwendig. / In this work, we studied the influence of epitaxial strain on the properties of iron based superconducting thin films grown by pulsed laser deposition. Epitaxial films of Ba(Fe1-xNix)2As2 have been realised for the first time using different nickel doping contents. Afterwards their structural and superconducting properties have been characterised. The results were compared to bulk samples as well as to thin films of the related compound Ba(Fe1-xCox)2As2. A maximum Tc of 21,6 K was measured, which exeeds the highest reported values of bulk samples. Depending on the used substrate, the phase diagram is shifted due to the induced tensile or compressive strain in the films. Compared to bulk samples, the slope of the upper critical field is strongly enhanced near the critical temperature due to antiferromagnetic fluctuations. The magnetic phase diagram measured in high fields shows simularities with the isostructural Co-doped system. The measurements reveal a small anisotropy of the upper critical field for low temperatures, while the anisotropy of the irreversibility field is increased due to the defect structure in the film. Furthermore, epitaxial thin FeSe1-xTex films have been deposited on GaAs as a new substrate material for iron based superconducting thin films achieving a critical temperature of up to 17,4 K. The self-organised formation of threedimensional micro helices by strain relaxation was realised by the preparation of epitaxial films on customized GaAs-based multilayer achitectures. However, mechanical defects prevented the superconducting characterisation. Therefore, a further improvement of the involved processes for microstructuring is necessary.
3

Das System LaFeAsO in Poly- und Einkristallen

Kappenberger, Rhea 31 May 2018 (has links) (PDF)
In dieser Arbeit wurde die Ausgangsverbindung der eisenbasierten Supraleiter, LaFeAsO, durch die Synthese und Charakterisierung von poly- und einkristallinen Proben untersucht. Supraleitung kann in den eisenbasierten Supraleitern durch Elektronen- oder Lochdotierung hervorgerufen werden. Die Substitution von Eisen durch Mangan, formal eine Lochdotierung, hat hingegen einen destruktiven Effekt auf die Supraleitung. Dieser ist bei optimal fluordotiertem LaFeAs(O,F) um Größenordnungen stärker ausgeprägt als bei Nd- oder Sm-FeAs(O,F). Indem Lanthan partiell durch das kleinere Yttrium substituiert wurde, konnte gezeigt werden, dass diese unterschiedlich starke Mangantoleranz durch die Unterschiede im Seltenerdmetall-Ionenradius bedingt ist. Weiterhin finden sich Anzeichen, dass die Unterdrückung der Supraleitung durch Mangan mit Elektronenlokalisierung korreliert ist. Das Fehlen von großen dreidimensionalen Einkristallen der SEFeAsO-Verbindungsklasse stellt ein großes Hindernis in der Erforschung der elektronischen Eigenschaften der eisenbasierten Supraleiter dar. Im Rahmen dieser Arbeit konnte gezeigt werden, dass das Verfahren der Festkörper-Einkristallzüchtung ein geeignetes Mittel darstellt, um große, facettierte SEFeAsO-Einkristalle mit ausgeprägtem Wachstum in c-Richtung zu erhalten. Mit diesem neu entwickelten Einkristallzüchtungsverfahren konnte ein aktualisiertes Phasendiagramm von La(Fe,Co)AsO erstellt werden. Die Substitution von Eisen durch Cobalt entspricht einer Elektronendotierung und führt zu Supraleitung mit einer maximalen Sprungtemperatur von 12 K. Die Ausgangsverbindung LaFeAsO zeigt bei etwa 156 K einen strukturellen Phasenübergang von einer tetragonalen zu einer orthorhombischen Struktur, weiterhin tritt unterhalb von etwa 138 K eine Spindichtewelle auf. In Einklang mit dem bekannten Phasendiagramm werden mit Cobaltdotierung die beiden Übergänge unterdrückt, mit höheren Cobaltkonzentrationen kommt es zu Supraleitung. Anders als beim bekannten Phasendiagramm kann eine deutliche Aufspaltung zwischen magnetischem und strukturellen Übergang bei kleinen Cobaltkonzentrationen beobachtet werden. Außerdem findet sich eine Region der Koexistenz zwischen Supraleitung und Spindichtewelle. Bisher konnte ein solcher Zustand im SE(Fe,Co)AsO-System nicht beobachtet werden.
4

Investigation of the Superconducting and Magnetic Phase Diagram of Off-Stoichiometric LiFeAs

Gräfe, Uwe 01 November 2017 (has links)
At their discovery in 2008, iron pnictide superconductors (IPS) provoked tremendous scientific interest, comparable to the discovery of the cuprate superconductors. So far, IPS reached critical temperatures T c up to 56K. Typically, they show an antiferromagnetic (afm) spin density wave (SDW) which has to be suppressed by doping before superconductivity develops, which then is supported by further doping. Due to the close vicinity of the magnetic and the superconducting (sc) phase, magnetic fluctuations are discussed to be responsible for the sc pairing mechanism in IPS. A special member of the IPS is LiFeAs, because it does not need doping to become sc. It is a stoichiometric superconductor at a T c of 18K. In fact, doping is suppressing its T c . Also, there is no sign of an afm SDW present. Therefore, LiFeAs is a interesting material to study the properties of the IPS in an undisturbed material. In 2010, experiments of the Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden) revealed further surprising properties of LiFeAs. Samples with a Li deficiency undergo a ferromagnetic (fm) phase transition at 165K. Theoretical calculations suggest that fm fluctuations could induce triplet superconductivity in LiFeAs. This would cause a nonvanishing dynamic susceptibility below T c , which is supported by nuclear magnetic resonance (NMR) experiments. This thesis is discussing the results of the IFW Dresden experiments, and concludes that this ferromagnetism is of weak itinerant nature. The origin might be an increase of the density of states (DOS) at the Fermi level, which is causing an instability towards fm order, as proposed by the Stoner model. For further doping experiments, the synthesis procedure of polycrystalline LiFeAs was optimized to get samples with maximum T c and minimum impurities. Therefore, nuclear quadrupole resonance (NQR) was used. The NQR line width is a measure of impurities in the sample. By minimizing the NQR line width, optimal samples were synthesized. These samples are able to compete with the properties of single crystals. To investigate the doping behavior of LiFeAs, a scenario with four different kinds of impurities and deficiencies was performed with the optimized synthesis procedure. 24 different samples were analyzed, by means of NQR and electrical conductivity. It was found that in fact Fe excess is responsible for changing the physical properties of LiFeAs, and not Li deficiency. It is causing a shrinking of the unit cell volume, as seen by X-ray diffraction (XRD) measurements and it causes a decrease of T c . It also leads to a decrease of room temperature resistivity, which is supporting an increase of the DOS at the Fermi level. The NQR frequency is scaling with the amount of Fe excess and can be used to draw the sc and fm phase diagram of off-stoichiometric LiFeAs. At an amount between 3.2 and 3.6% o f Fe excess LiFeAs undergoes the fm transition.
5

Das System LaFeAsO in Poly- und Einkristallen

Kappenberger, Rhea 26 March 2018 (has links)
In dieser Arbeit wurde die Ausgangsverbindung der eisenbasierten Supraleiter, LaFeAsO, durch die Synthese und Charakterisierung von poly- und einkristallinen Proben untersucht. Supraleitung kann in den eisenbasierten Supraleitern durch Elektronen- oder Lochdotierung hervorgerufen werden. Die Substitution von Eisen durch Mangan, formal eine Lochdotierung, hat hingegen einen destruktiven Effekt auf die Supraleitung. Dieser ist bei optimal fluordotiertem LaFeAs(O,F) um Größenordnungen stärker ausgeprägt als bei Nd- oder Sm-FeAs(O,F). Indem Lanthan partiell durch das kleinere Yttrium substituiert wurde, konnte gezeigt werden, dass diese unterschiedlich starke Mangantoleranz durch die Unterschiede im Seltenerdmetall-Ionenradius bedingt ist. Weiterhin finden sich Anzeichen, dass die Unterdrückung der Supraleitung durch Mangan mit Elektronenlokalisierung korreliert ist. Das Fehlen von großen dreidimensionalen Einkristallen der SEFeAsO-Verbindungsklasse stellt ein großes Hindernis in der Erforschung der elektronischen Eigenschaften der eisenbasierten Supraleiter dar. Im Rahmen dieser Arbeit konnte gezeigt werden, dass das Verfahren der Festkörper-Einkristallzüchtung ein geeignetes Mittel darstellt, um große, facettierte SEFeAsO-Einkristalle mit ausgeprägtem Wachstum in c-Richtung zu erhalten. Mit diesem neu entwickelten Einkristallzüchtungsverfahren konnte ein aktualisiertes Phasendiagramm von La(Fe,Co)AsO erstellt werden. Die Substitution von Eisen durch Cobalt entspricht einer Elektronendotierung und führt zu Supraleitung mit einer maximalen Sprungtemperatur von 12 K. Die Ausgangsverbindung LaFeAsO zeigt bei etwa 156 K einen strukturellen Phasenübergang von einer tetragonalen zu einer orthorhombischen Struktur, weiterhin tritt unterhalb von etwa 138 K eine Spindichtewelle auf. In Einklang mit dem bekannten Phasendiagramm werden mit Cobaltdotierung die beiden Übergänge unterdrückt, mit höheren Cobaltkonzentrationen kommt es zu Supraleitung. Anders als beim bekannten Phasendiagramm kann eine deutliche Aufspaltung zwischen magnetischem und strukturellen Übergang bei kleinen Cobaltkonzentrationen beobachtet werden. Außerdem findet sich eine Region der Koexistenz zwischen Supraleitung und Spindichtewelle. Bisher konnte ein solcher Zustand im SE(Fe,Co)AsO-System nicht beobachtet werden.
6

Electronic phase diagrams and competing ground states of complex iron pnictides and chalcogenides

Kamusella, Sirko 29 March 2017 (has links) (PDF)
In this thesis the superconducting and magnetic phases of LiOH(Fe,Co)(Se,S), CuFeAs/CuFeSb, and LaFeP_1-xAs_xO - belonging to the 11, 111 and 1111 structural classes of iron-based arsenides and chalcogenides - are investigated by means of 57Fe Mössbauer spectroscopy and muon spin rotation/relaxation (μSR). Of major importance in this study is the application of high magnetic fields in Mössbauer spectroscopy to distinguish and characterize ferro- (FM) and antiferromagnetic (AFM) order. A user-friendly Mössbauer data analysis program was developed to provide suitable model functions not only for high field spectra, but relaxation spectra or parameter distributions in general. In LaFeP_1-xAs_xO the reconstruction of the Fermi surface is described by the vanishing of the Γ hole pocket with decreasing x. The continuous change of the orbital character and the covalency of the d-electrons is shown by Mössbauer spectroscopy. A novel antiferromagnetic phase with small magnetic moments of ~ 0.1 μ_B state is characterized. The superconducting order parameter is proven to continuously change from a nodal to a fully gapped s-wave like Fermi surface in the superconducting regime as a function of x, partially investigated on (O,F) substituted samples. LiOHFeSe is one of the novel intercalated FeSe compounds, showing strongly increased T_C = 43 K mainly due to increased interlayer spacing and resulting two-dimensionality of the Fermi surface. The primary interest of the samples of this thesis is the simultaneously observed ferromagnetism and superconductivity. The local probe techniques prove that superconducting sample volume gets replaced by ferromagnetic volume. Ferromagnetism arises from magnetic order with T_C = 10 K of secondary iron in the interlayer. The tendency of this system to show (Li,Fe) disorder is preserved upon (Se,S) substitution. However, superconductivity gets suppressed. The results of Mössbauer spectroscopy indicate that the systems tends to a secondary structural phase, where the local iron environment observed in pure FeS is absent. Moreover, two interlayer positions of the iron are identified. The absence of enhanced superconducting T_C in LiOHFeS thus is related to a structural instability. Also, in CuFeAs the role of secondary iron at the Cu position turns out to be decisive for the observed magnetic behaviour. As in LiOHFeSe, it orders ferromagnetically at T_C ~ 11 K and superimposes with the magnetic instability of the main iron site. It is shown that a small charge doping of 0.1e/Fe, which is expected from (Cu,Fe) disorder, is sufficient to switch the system between a paramagnetic and an AFM ground state. Both magnetic orders are indistinguishable, because the magnetic order parameters are strongly coupled. This coupling was observed in the structurally identical CuFeSb, where the magnetic order parameters of both iron sites scale perfectly. The magnetically unstable CuFeAs and the ferromagnetic CuFeSb can be classified according to the theory of As height driven magnetism, predicting a change from paramagnetism to AFM and finally FM with increasing As height.
7

Interplay of magnetic, orthorhombic, and superconducting phase transitions in iron-based superconductors

Schmiedt, Jacob 29 October 2014 (has links) (PDF)
The physics of iron pnictides has been the subject of intense research for half a decade since the discovery of superconductivity in doped LaFeAsO in 2008. By now there exists a large number of different materials that are summarized under the term "pnictides'' with significant differences in their crystal structure, electronic properties, and their phase diagrams. This thesis is concerned with the investigation of the various phase transitions that are observed in the underdoped compounds of the pnictide subgroups RFeAsO, where R is a rare-earth element, and AFe_2As_2, where A is an alkaline-earth element. These compounds display two closely bound transitions from a tetragonal to an orthorhombic phase and from a paramagnetic to an antiferromagnetic metal. Both symmetry-broken phases are suppressed by doping or pressure and close to their disappearance superconductivity sets in. The superconducting state is stabilized until some optimal doping or pressure is reached and gets suppressed thereafter. The central goal of this thesis is to improve our understanding of the interplay between these three phases and to describe the various phase transitions. We start from an itinerant picture that explains the magnetism as a result of an excitonic instability and show how the other phases can be included into this picture. This approach is based on the the observation that the compounds we are interested in have a Fermi surface with multiple nested electron and hole pockets and that they have small to intermediate interaction strengths. The thesis starts with a study of the doping dependence of the antiferromagnetic phase transition in four different five-orbital models. We use the random-phase approximation to determine the transition temperature, the dominant ordering vector, and the contribution of the different orbitals to the ordering. This allows us to identify the more realistic models, which give results that are in good agreement with experimental observations. In addition to the frequently made assumption of orbital-independent interaction potentials we study the effect of a reduction of the interaction strengths that involve the d_{xy} orbital. We find that this tunes the system between two different nesting instabilities. A reduction of the interactions that involve the d_{xy} orbital also enhances the tendency towards incommensurate (IC) order. For a weak reduction this tendency is compensated by the presence of the orthorhombic phase. However, for a reduction of 30%, as it is suggested by constrained random-phase-approximation calculations, we always find large doping ranges, where a state with IC order has the highest transition temperature. We continue the investigation of the magnetic phase transition by studying the competition of different possible types of antiferromagnetic order that arises from the presence of two degenerate nesting instabilities with the ordering vectors (pi,0) and (0,pi). We derive a Ginzburg-Landau free energy from a microscopic two-band model and find that the presence of the experimentally observed stripe phase strongly depends on the number and size of the hole pockets in the system and on the doping. We show that within the picture of a purely magnetically driven nematic phase transition, which breaks the C_4 symmetry and induces the orthorhombic distortion, the nematic phase displays exactly the same dependence on the model parameters as the magnetic stripe phase. We propose that in addition to the purely magnetically driven nematic instability there is a ferro-orbital instability in the system that stabilizes the nematic transition and, thus, explains the experimentally observed robustness of the orthorhombic transition. We argue that including a ferro-orbital instability into the picture may also be necessary to reproduce the transition from simultaneous first-order transitions into an orthorhombic antiferromagnetic state to two separate second-order transitions, which is observed as a function of doping. Finally, a study of the superconducting phase transition inside the antiferromagnetic phase that is observed in some pnictide compounds is presented. We present an approach to calculate the fluctuation-mediated pairing interaction in the spin-density-wave phase of a multiband system, which is based on the random-phase approximation. This approach is applied to a minimal two-band model for the pnictides to study the effect of the various symmetry-allowed bare on-site interactions on the gap symmetry and structure. We find a competition between various even- and odd-parity states and over a limited parameter range a p_x-wave state is the dominant instability. The largest part of the parameter space is dominated by even parity states but the gap structure sensitively depends on the bare interactions. We propose that the experimentally observed transition from a nodeless to a nodal gap can be due to changes in the on-site interaction potentials.
8

Electronic phase diagrams and competing ground states of complex iron pnictides and chalcogenides: A Mössbauer spectroscopy and muon spin rotation/relaxation study

Kamusella, Sirko 01 March 2017 (has links)
In this thesis the superconducting and magnetic phases of LiOH(Fe,Co)(Se,S), CuFeAs/CuFeSb, and LaFeP_1-xAs_xO - belonging to the 11, 111 and 1111 structural classes of iron-based arsenides and chalcogenides - are investigated by means of 57Fe Mössbauer spectroscopy and muon spin rotation/relaxation (μSR). Of major importance in this study is the application of high magnetic fields in Mössbauer spectroscopy to distinguish and characterize ferro- (FM) and antiferromagnetic (AFM) order. A user-friendly Mössbauer data analysis program was developed to provide suitable model functions not only for high field spectra, but relaxation spectra or parameter distributions in general. In LaFeP_1-xAs_xO the reconstruction of the Fermi surface is described by the vanishing of the Γ hole pocket with decreasing x. The continuous change of the orbital character and the covalency of the d-electrons is shown by Mössbauer spectroscopy. A novel antiferromagnetic phase with small magnetic moments of ~ 0.1 μ_B state is characterized. The superconducting order parameter is proven to continuously change from a nodal to a fully gapped s-wave like Fermi surface in the superconducting regime as a function of x, partially investigated on (O,F) substituted samples. LiOHFeSe is one of the novel intercalated FeSe compounds, showing strongly increased T_C = 43 K mainly due to increased interlayer spacing and resulting two-dimensionality of the Fermi surface. The primary interest of the samples of this thesis is the simultaneously observed ferromagnetism and superconductivity. The local probe techniques prove that superconducting sample volume gets replaced by ferromagnetic volume. Ferromagnetism arises from magnetic order with T_C = 10 K of secondary iron in the interlayer. The tendency of this system to show (Li,Fe) disorder is preserved upon (Se,S) substitution. However, superconductivity gets suppressed. The results of Mössbauer spectroscopy indicate that the systems tends to a secondary structural phase, where the local iron environment observed in pure FeS is absent. Moreover, two interlayer positions of the iron are identified. The absence of enhanced superconducting T_C in LiOHFeS thus is related to a structural instability. Also, in CuFeAs the role of secondary iron at the Cu position turns out to be decisive for the observed magnetic behaviour. As in LiOHFeSe, it orders ferromagnetically at T_C ~ 11 K and superimposes with the magnetic instability of the main iron site. It is shown that a small charge doping of 0.1e/Fe, which is expected from (Cu,Fe) disorder, is sufficient to switch the system between a paramagnetic and an AFM ground state. Both magnetic orders are indistinguishable, because the magnetic order parameters are strongly coupled. This coupling was observed in the structurally identical CuFeSb, where the magnetic order parameters of both iron sites scale perfectly. The magnetically unstable CuFeAs and the ferromagnetic CuFeSb can be classified according to the theory of As height driven magnetism, predicting a change from paramagnetism to AFM and finally FM with increasing As height.:1 Acronyms and Symbols 2 Introduction 3 Iron-based arsenides and chalcogenides 3.1 Structural properties 3.2 Electronic properties 3.2.1 Magnetism 3.2.2 Superconductivity 3.2.3 Nematic phase 3.3 Investigated samples 4 Moessfit - a free Mössbauer fitting program 4.1 Aspects of program design 4.2 Errors 4.2.1 Uncorrelated 4.2.2 Hesse 4.2.3 MonteCarlo 4.2.4 Minos 4.3 Fitting algorithm 4.4 Maximum entropy method (MEM) 4.5 Kolmogorov-Smirnov confidence 5 Mössbauer spectroscopy 5.1 Mössbauer effect 5.2 Relativistic Doppler effect 5.3 Full static Hamiltonian 5.3.1 Quadrupole interaction 5.3.2 Isomer shift. 5.3.3 Zeeman splitting 5.3.4 Combined interaction 5.3.5 Transition probabilities 5.3.6 The magic angle 5.4 Transmission integral 5.4.1 Absorption area 5.4.2 Ideal thickness 5.4.3 Line width and line shape 5.4.4 Levelling 5.5 Applied field measurements of powder samples 5.5.1 Paramagnet, axial symmetric EFG in transverse field geometry 6 5.5.2 Uniaxial antiferromagnet, axial symmetric EFG in transverse field geometry 6 5.5.3 Paramagnet, axial symmetric EFG in longitudinal field geometry 6 5.5.4 Uniaxial ferromagnet, axial symmetric EFG in transverse field geometry 6 5.5.5 Polarised photons 5.5.6 Total absorption cross section 5.5.7 Polarised sources 5.6 Blume line shape model 6 μSR 6.1 Muon decay and detection 6.2 Magnetic order and dynamic relaxation 6.2.1 Magnetic order 6.2.2 Time dependent field distributions 6.2.3 Aspects of μSR in iron-based arsenides and chalcogenides 6.2.4 Weak transverse field (WTF) 6.3 Superconductivity - transverse field (TF) experiments 7 Intercalated FeSe 7.1 Bulk properties: XRD, susceptibility, resistivity 7.2 Structural characterization 7.3 LiOHFeSe - Mössbauer spectroscopy 7.3.1 Applied transverse field 7.4 LiOHFeSe - μSR 7.4.1 Zero field (ZF) 7.4.2 Pinning experiment 7.4.3 Transverse field (TF) 7.5 Mössbauer investigation of LiOHFe_1-yCo_ySe_1-xS_x. 7.6 Discussion 8 LaFeO(As,P) 8.1 Preliminary measurements and electronic structure calculations 8.2 Mössbauer spectroscopy 8.3 μSR 8.3.1 Magnetic characterization 8.3.2 Spin dynamics 8.3.3 Superconductivity 8.4 Discussion 9 CuFeAs and CuFeSb 9.1 Preliminary results of CuFeAs and CuFeSb 9.2 CuFeAs: Mössbauer spectroscopy 9.2.1 Zero field (ZF) 9.2.2 Longitudinal field (LF) 9.2.3 Transverse field (TF) 9.3 CuFeAs: μSR 9.3.1 Zero field (ZF) 9.3.2 Weak transverse field (WTF) 9.4 Further investigations on CuFeAs 9.4.1 Neutron scattering 9.4.2 Theoretical calculation 9.4.3 Local element analysis with EDX/WDX 9.5 CuFeSb: Mössbauer spectroscopy 9.5.1 Zero Field (ZF) 9.5.2 Transverse field (TF) 9.6 Discussion 10 Conclusion 11 Appendix 11.1 Derivation of the quadrupole interaction and isomer shift 11.2 Matrix form of the static nuclear Hamiltonian 11.3 Mössbauer line intensities 11.4 Blume line shape model 11.4.1 Special case: two states with diagonal Hamiltonians 11.5 Moessfit models 11.5.1 FeSe_1-xS_x(Li_1-zFe_zOH) ZF, standard 11.5.2 FeSe_1-xS_x(Li_1-zFe_zOH) ZF, 4 fractions 11.5.3 FeSe_1-xS_x(Li_1-zFe_zOH) Pinning 11.5.4 FeSe_1-xS_x(Li_1-zFe_zOH) TF 11.5.5 FeSe_1-xS_x(Li_1-zFe_zOH) CS-Vzz-MEM 11.5.6 LaFeP_1-xAs_x+ ferrocene, ZF 11.5.7 LaFeP_1-xAs_x+ ferrocene, LF 11.5.8 LaFeP_1-xAs_x+ iron foil, ZF 11.5.9 LaFeAsO ZF 11.5.10 LaFeAsO TF 11.5.11 CuFeAs + ferrocen, ZF 11.5.12 CuFeAs + ferrocen, ZF, high statistics 11.5.13 CuFeAs + ferrocen, LF 11.5.14 CuFeAs + ferrocen, TF 11.5.15 CuFeSb ZF 11.5.16 CuFeSb TF
9

Interplay of magnetic, orthorhombic, and superconducting phase transitions in iron-based superconductors

Schmiedt, Jacob 07 October 2014 (has links)
The physics of iron pnictides has been the subject of intense research for half a decade since the discovery of superconductivity in doped LaFeAsO in 2008. By now there exists a large number of different materials that are summarized under the term "pnictides'' with significant differences in their crystal structure, electronic properties, and their phase diagrams. This thesis is concerned with the investigation of the various phase transitions that are observed in the underdoped compounds of the pnictide subgroups RFeAsO, where R is a rare-earth element, and AFe_2As_2, where A is an alkaline-earth element. These compounds display two closely bound transitions from a tetragonal to an orthorhombic phase and from a paramagnetic to an antiferromagnetic metal. Both symmetry-broken phases are suppressed by doping or pressure and close to their disappearance superconductivity sets in. The superconducting state is stabilized until some optimal doping or pressure is reached and gets suppressed thereafter. The central goal of this thesis is to improve our understanding of the interplay between these three phases and to describe the various phase transitions. We start from an itinerant picture that explains the magnetism as a result of an excitonic instability and show how the other phases can be included into this picture. This approach is based on the the observation that the compounds we are interested in have a Fermi surface with multiple nested electron and hole pockets and that they have small to intermediate interaction strengths. The thesis starts with a study of the doping dependence of the antiferromagnetic phase transition in four different five-orbital models. We use the random-phase approximation to determine the transition temperature, the dominant ordering vector, and the contribution of the different orbitals to the ordering. This allows us to identify the more realistic models, which give results that are in good agreement with experimental observations. In addition to the frequently made assumption of orbital-independent interaction potentials we study the effect of a reduction of the interaction strengths that involve the d_{xy} orbital. We find that this tunes the system between two different nesting instabilities. A reduction of the interactions that involve the d_{xy} orbital also enhances the tendency towards incommensurate (IC) order. For a weak reduction this tendency is compensated by the presence of the orthorhombic phase. However, for a reduction of 30%, as it is suggested by constrained random-phase-approximation calculations, we always find large doping ranges, where a state with IC order has the highest transition temperature. We continue the investigation of the magnetic phase transition by studying the competition of different possible types of antiferromagnetic order that arises from the presence of two degenerate nesting instabilities with the ordering vectors (pi,0) and (0,pi). We derive a Ginzburg-Landau free energy from a microscopic two-band model and find that the presence of the experimentally observed stripe phase strongly depends on the number and size of the hole pockets in the system and on the doping. We show that within the picture of a purely magnetically driven nematic phase transition, which breaks the C_4 symmetry and induces the orthorhombic distortion, the nematic phase displays exactly the same dependence on the model parameters as the magnetic stripe phase. We propose that in addition to the purely magnetically driven nematic instability there is a ferro-orbital instability in the system that stabilizes the nematic transition and, thus, explains the experimentally observed robustness of the orthorhombic transition. We argue that including a ferro-orbital instability into the picture may also be necessary to reproduce the transition from simultaneous first-order transitions into an orthorhombic antiferromagnetic state to two separate second-order transitions, which is observed as a function of doping. Finally, a study of the superconducting phase transition inside the antiferromagnetic phase that is observed in some pnictide compounds is presented. We present an approach to calculate the fluctuation-mediated pairing interaction in the spin-density-wave phase of a multiband system, which is based on the random-phase approximation. This approach is applied to a minimal two-band model for the pnictides to study the effect of the various symmetry-allowed bare on-site interactions on the gap symmetry and structure. We find a competition between various even- and odd-parity states and over a limited parameter range a p_x-wave state is the dominant instability. The largest part of the parameter space is dominated by even parity states but the gap structure sensitively depends on the bare interactions. We propose that the experimentally observed transition from a nodeless to a nodal gap can be due to changes in the on-site interaction potentials.
10

Thermoelektrische Transportuntersuchungen an topologischen und korrelierten Elektronensystemen

Wuttke, Christoph 03 February 2021 (has links)
In dieser Arbeit werden Messungen elektrischer, thermischer und insbesondere thermoelektrischer Transportkoeffizienten in topologischen Weyl-Halbmetall-Kandidaten sowie in eisenbasierten Hochtemperatur-Supraleitern vorgestellt, analysiert und diskutiert. In TaAs und TaP, zwei Weyl-Halbmetall-Kandidaten mit gebrochener Inversionssymmetrie, liefert das anomale Verhalten des Nernst-Signals in Abhängigkeit des Magnetfeldes Hinweise auf die Existenz von Weyl-Punkten in der Nähe der Fermi-Fläche, wobei sich die Verschiebung des chemischen Potenzials sowie ein Lifshitz-Übergang detektieren lassen. Die Temperaturabhängigkeit des Nernst-Signales erlaubt außerdem Rückschlüsse auf den Abstand der Weyl-Punkte zur Fermi-Fläche. In Mn3Ge, einem Weyl-Halbmetall-Kandidaten mit gebrochener Zeitumkehrsymmetrie, zeigt sich für alle gemessenen Temperaturen ein komplett anomales Verhalten des Nernst-Signals in Abhängigkeit des Magnetfeldes mit einer rechteckigen Hysterese bei kleinen Feldern, welches im Vergleich mit Daten der Magnetisierung einen eindeutigen Hinweis auf die Präsenz von Weyl-Punkten in diesem Material liefert. Mithilfe eines minimalen theoretischen Modells zweier Weyl-Punkte in der Nähe der Fermi-Fläche lässt sich eine Anpassungsformel für die Temperaturabhängigkeit des Nernst-Signals gewinnen, aus welcher sowohl geometrische Parameter der Bandstruktur als auch die Stärke der Berry-Krümmung an der Fermi-Energie extrahiert werden können. Für eisenbasierte Supraleiter besteht seit Langem der Verdacht, dass nematische Fluktuationen einen Einfluss auf die Supraleitung haben. Hier vorgestellte theoretische Betrachtungen zeigen im Rahmen eines Zweibandmodells eindeutig, dass eine endliche nematische Kopplung zu einer starken Erhöhung und einer nicht-monotonen Abhängigkeit des Nernst-Koeffizienten von der Dotierung führt, welcher ein Maximum über dem supraleitenden Dom aufweist. Dies wird anhand von Nernst-Messungen in Co-dotiertem LaFeAsO bestätigt. Ein Vergleich der Ergebnisse des Nernst-Effekts mit Elasto-Widerstandsmessungen enthüllt eine erstaunliche Ähnlichkeit der Dotierabhängigkeiten. Die Daten werden außerdem mit Messungen des Nernst-Effekts an Rh-dotiertem BaFe2As2 verglichen, wobei ebenfalls eine Erhöhung im Bereich optimaler Dotierung nachgewiesen werden kann. In Rh-dotietem BaFe2As2 zeigt sich jedoch ein Unterschied zwischen Elasto-Widerstands- und Nernst-Messungen, woraus abgeleitet wird, dass Elasto-Widerstandsmessungen kein vollständiges Bild der nematischen Fluktuation liefern. Der Nernst-Effekt ist hingegen aufgrund der Sensitivität auf nematische Fluktuationen universell in zwei Vertretern verschiedener Familien eisenbasierter Supraleiter maximal im Bereich des supraleitenden Doms. Dies liefert, zusammen mit den theoretischen Betrachtungen, einen starken Hinweis auf den Einfluss nematischer Fluktuationen auf die Supraleitung. / In this work the electric, thermal, and thermoelectric transport properties of several topological Weyl semimetal candidates and iron-based superconductors are investigated. In TaAs and TaP, two Weyl semimetal candidates with broken inversion symmetry, the Nernst signal exhibits anomalous behaviour as a function of magnetic field, consistent with Weyl points close to the Fermi surface. Furthermore, a shift of the chemical potential and a Lifshitz transition are detected. The temperature dependence of the Nernst signal allows for an estimation of the energy of the Weyl points with respect to the Fermi level. In Mn3Ge, a Weyl semimetal candidate with broken time reversal symmetry, the Nernst signal shows completely anomalous behaviour as a function of magnetic field that can be obtained at all measured temperatures. At low fields the signal exhibits a rectangular hysteresis cycle. A comparison with magnetization measurements evidently shows that these effects are caused by Weyl points lying close to the Fermi surface. With the help of a minimal model of two Weyl points in the vicinity of the Fermi level, a fitting formula of the temperature dependence of the Nernst signal can be obtained. The fit provides geometrical properties of the band structure, such as the $\boldsymbol{k}$-space separation of the Weyl points, their energy with respect to the Fermi level as well as the strength of the Berry curvature close to the Fermi energy. For a long time nematic fluctuations have been suspected to influence superconductivity in iron-based superconductors. A theoretical analysis, with the help of a two-band model, shows clearly that a finite nematic coupling causes a strong enhancement and non-monotonic behaviour of the Nernst coefficient, which develops a maximum above the superconducting dome. These findings are confirmed by Nernst measurements in Co-doped LaFeAsO. A comparison with elasto-resistivity measurements shows a stunning similarity of the doping dependencies of both quantities. Furthermore the data are compared with measurements on Rh-doped BaFe2As2, which also exhibits an enhancement of the Nernst coefficient in the region of optimal doping. However, in Rh-doped BaFe2As2 a difference between elastoresistivity and Nernst measurements is obtained, indicating that the elasto-resistivity measurements are not universally sensitive to nematic fluctuations. The Nernst effect, on the other hand, is enhanced in the vicinity of the superconducting dome in two members of different families of iron-based superconductors. Together with theoretical insights, these results provide strong evidence for the influence of nematic fluctuations on superconductivity in the iron-based superconductors.

Page generated in 0.1393 seconds