• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • Tagged with
  • 13
  • 11
  • 11
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electronic and magnetic properties of iron-based superconductors

Watson, Matthew D. January 2015 (has links)
This thesis presents experimental studies of the electronic and magnetic properties of several iron-based unconventional superconductors, primarily using the techniques of magnetotransport and torque magnetometry in high magnetic fields and synchrotron-based angle-resolved photo-emission spectroscopy (ARPES). Superconductivity in the iron-based superconductors is always found in proximity to a magnetic phase, and the details of the electronic structure and Fermi surface are also important in determining the strength of interactions, and ultimately superconductivity. This motivates the experimental studies of electronic, magnetic and superconducting properties of Fe-based superconductors presented in this thesis. First, quantum oscillation measurements using high-field torque magnetometry are used to provide a partial determination of the Fermi surface of superconducting LiFeAs. The data are compared with density functional theory calculations, finding strong mass enhancements on the observed electron bands, however the hole bands are not observed. A large portion of this thesis concerns experiments on FeSe, which uniquely has a structural transition but is not magnetically ordered at any temperature. High field magnetotransport measurements show quantum oscillations, revealing small quasi-two dimensional Fermi surfaces, and it is argued that both hole and electron pockets are observed. The low-temperature Fermi surface consisting of one hole pocket and two electron pockets is also deduced from low-field magnetotransport. ARPES studies show that both hole and electron pockets undergo a significant elongation when cooling through the structural transition at ~90 K, interpreted as the result of orbital order. Measurements of the resistivity anisotropy above the structural transition are used to show that the structural distortion is electronically-driven. By combining these data sets, a complete picture of the symmetry-broken electronic structure of FeSe is constructed. The final chapter concerns another iron-based superconductor with a more complex crystal structure, the so-called ``10-3-8" phase, and in particular finds an unusual field-induced magnetic transition.
2

Nuclear Magnetic Resonance on Selected Lithium Based Compounds

Rudisch, Christian 13 January 2014 (has links) (PDF)
This thesis presents the NMR measurements on the single crystals LiMnPO4 and Li0.9FeAs. Therefore, the thesis is divided into two separated sections. The first part reports on the competitive next generation cathode material LiMnPO4 with a stable reversible capacity up to 145 mAh/g and a rather flat discharge voltage curve at 4.1 V. For the basic understanding of the material the magnetic properties have been investigated by a Li and P NMR study in the paramagnetic and antiferromagnetic phase. LiMnPO4 shows a strong anisotropy of the dipolar hyperfine coupling due to the strong local magnetic moments at the Mn site. The corresponding dipole tensor of the Li- and P-nuclei is fully determined by orientation and temperature dependent NMR experiments and compared to the calculated values from crystal structure data. Deviations of the experimentally determined values from the theoretical ones are discussed in terms of Mn disorder which could have an impact on the mobility of the Li ions. The disorder is corroborated by diffuse x-ray diffraction experiments which indicate a shift of the heavy elements in the lattice, namely the Mn atoms. Furthermore, the spin arrangement in the relative strong field of 7.0494 T in the antiferromagnetic state is understood by the NMR measurements. In order to obtain parameters of the Li ion diffusion in LiMnPO4 measurements of the spin lattice relaxation rate were performed. Due to the strong dipolar coupling between the Li-nuclei and the magnetic moments at the Mn site it is difficult to extract parameters which can characterize the diffusive behavior of the Li ions. The second section reports on the AC/DC susceptibility and NMR/NQR studies on Li deficit samples labeled as Li0.9FeAs. LiFeAs belongs to the family of the superconducting Pnictides which are discovered in 2008 by H. Hosono et al. In recent studies the stoichiometric compound reveals triplet superconductivity below Tc ∼ 18 K which demands ferromagnetic coupling of the electrons in the Cooper pairs. In Li0.9FeAs the Li deficit acts like hole doping which suppresses the superconductivity. Then ferromagnetism can arise which is very interesting because of the vicinity to the triplet superconductivity. With the microscopic methods NMR/NQR on the Li and As nuclei, it was investigated where the ferromagnetism can be located in Li0.9FeAs. Recent susceptibility, ESR and µSR studies reveal an internal field due to the ferromagnetism. In contrast, the internal field could not be used to perform zero field NMR measurements. Possible reasons for this discrepancy are discussed. In addition, the automatic insitu AC susceptibility technique by using the NMR radio frequency circuit has been tested by a reference compound Co2TiGa which shows itinerant ferromagnetism. Similar curves are observed for Li0.9FeAs which indicate the existence of itinerant magnetic moments in Li0.9FeAs. Furthermore, in order to determine the size of the dipolar contribution from the magnetic moments of the Fe the dipolar hyperfine coupling tensor was calculated from the crystal structure data. The comparison of the experimental and calculated hyperfine coupling elements reveals transferred hyperfine fields in LiFeAs.
3

Investigation of the Superconducting and Magnetic Phase Diagram of Off-Stoichiometric LiFeAs

Gräfe, Uwe 26 March 2018 (has links) (PDF)
At their discovery in 2008, iron pnictide superconductors (IPS) provoked tremendous scientific interest, comparable to the discovery of the cuprate superconductors. So far, IPS reached critical temperatures T c up to 56K. Typically, they show an antiferromagnetic (afm) spin density wave (SDW) which has to be suppressed by doping before superconductivity develops, which then is supported by further doping. Due to the close vicinity of the magnetic and the superconducting (sc) phase, magnetic fluctuations are discussed to be responsible for the sc pairing mechanism in IPS. A special member of the IPS is LiFeAs, because it does not need doping to become sc. It is a stoichiometric superconductor at a T c of 18K. In fact, doping is suppressing its T c . Also, there is no sign of an afm SDW present. Therefore, LiFeAs is a interesting material to study the properties of the IPS in an undisturbed material. In 2010, experiments of the Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden) revealed further surprising properties of LiFeAs. Samples with a Li deficiency undergo a ferromagnetic (fm) phase transition at 165K. Theoretical calculations suggest that fm fluctuations could induce triplet superconductivity in LiFeAs. This would cause a nonvanishing dynamic susceptibility below T c , which is supported by nuclear magnetic resonance (NMR) experiments. This thesis is discussing the results of the IFW Dresden experiments, and concludes that this ferromagnetism is of weak itinerant nature. The origin might be an increase of the density of states (DOS) at the Fermi level, which is causing an instability towards fm order, as proposed by the Stoner model. For further doping experiments, the synthesis procedure of polycrystalline LiFeAs was optimized to get samples with maximum T c and minimum impurities. Therefore, nuclear quadrupole resonance (NQR) was used. The NQR line width is a measure of impurities in the sample. By minimizing the NQR line width, optimal samples were synthesized. These samples are able to compete with the properties of single crystals. To investigate the doping behavior of LiFeAs, a scenario with four different kinds of impurities and deficiencies was performed with the optimized synthesis procedure. 24 different samples were analyzed, by means of NQR and electrical conductivity. It was found that in fact Fe excess is responsible for changing the physical properties of LiFeAs, and not Li deficiency. It is causing a shrinking of the unit cell volume, as seen by X-ray diffraction (XRD) measurements and it causes a decrease of T c . It also leads to a decrease of room temperature resistivity, which is supporting an increase of the DOS at the Fermi level. The NQR frequency is scaling with the amount of Fe excess and can be used to draw the sc and fm phase diagram of off-stoichiometric LiFeAs. At an amount between 3.2 and 3.6% o f Fe excess LiFeAs undergoes the fm transition.
4

Unusual electronic properties in LiFeAs probed by low temperature scanning tunneling microscopy and spectroscopy

Nag, Pranab Kumar 11 December 2017 (has links) (PDF)
In this thesis, the electronic properties in superconducting LiFeAs single crystal are investigated using low temperature scanning tunneling microscopy and spectroscopy (STM/S) at various temperatures. For this purpose, the differential conductance (dI/dV) measured by STS which is directly proportional to the local density of states (LDOS) of the sample to the sub-atomic precision, is used together with the topography information. The dI/dV spectra within the ±1 V energy range reveal a characteristic feature at around -350 mV to -400 mV in stoichiometric LiFeAs. This feature seems to be a universal property among all the Fe-based high temperature superconductors, because it is also found in Fe0.965Se1.035 and NaFe0.975Co0.025As single crystals at the energy of -210 mV and -200 mV, respectively. The temperature dependent spectroscopy data averaged over a spatially fixed clean area of 2 nm × 2 nm are successfully executed between 5 K and 20 K. The two distinct superconducting phases with critical temperatures Tc = 16 K and 18 K are observed. In addition, the distance between the dip position outside the superconducting gap and the superconducting coherence peak in the spectra remains temperature independent which confirms that it is not connected to an antiferromagnetic (AFM) spin resonance. The temperature dependent spectra have been measured between 5 K and 61 K within the energy range of ±100 mV as well. The hump structure at 42 mV tends to disappear around 60 K from unknown origin. The temperature dependent quasiparticle interference (QPI) has been studied within the temperature range between 6.7 K and 25 K and analyzed by the Fourier transformation of the measured spectroscopic maps. The dispersion plots in momentum space as a function of temperature show an enhancement of QPI intensity (±5.5 mV) within the superconducting gap at the Fermi level at 6.7 K near q ~ 0. This is interpreted on the basis of Andreev bound state. In both polarities outside of this, a depletion of QPI intensity is noticed between 5.5 mV and around 9 mV. At positive energies, the QPI intensity becomes very rich above 9 mV. The size of the enhanced QPI intensity near the Fermi level, and the edge of the rich QPI intensity beyond 9 mV are found to behave like superconducting order parameter with rising of temperature. Furthermore, an energy mode peaked at around 14 mV appears in the integrated QPI intensity below superconducting Tc (6.7 K). This is consistent with the observed peak at 1st derivative of the dI/dV spectra. In both of these cases, such 14 mV peak is suppressed at normal state (25 K). This mode is therefore directly related to superconductivity in LiFeAs. The off-stoichiometric LiFeAs single crystal with superconducting Tc of 6.5 K has a 10 mV rigid band shift of the Fermi level towards electron doping. The absence of the rich QPI intensity between 9 mV and 17 mV is found compared to the stoichiometric LiFeAs, and hence the 14 mV mode is absent here. This brings us to conclude once more time that such 14 mV energy mode is relevant for superconductivity in LiFeAs.
5

Unusual electronic properties in LiFeAs probed by low temperature scanning tunneling microscopy and spectroscopy

Nag, Pranab Kumar 11 October 2017 (has links)
In this thesis, the electronic properties in superconducting LiFeAs single crystal are investigated using low temperature scanning tunneling microscopy and spectroscopy (STM/S) at various temperatures. For this purpose, the differential conductance (dI/dV) measured by STS which is directly proportional to the local density of states (LDOS) of the sample to the sub-atomic precision, is used together with the topography information. The dI/dV spectra within the ±1 V energy range reveal a characteristic feature at around -350 mV to -400 mV in stoichiometric LiFeAs. This feature seems to be a universal property among all the Fe-based high temperature superconductors, because it is also found in Fe0.965Se1.035 and NaFe0.975Co0.025As single crystals at the energy of -210 mV and -200 mV, respectively. The temperature dependent spectroscopy data averaged over a spatially fixed clean area of 2 nm × 2 nm are successfully executed between 5 K and 20 K. The two distinct superconducting phases with critical temperatures Tc = 16 K and 18 K are observed. In addition, the distance between the dip position outside the superconducting gap and the superconducting coherence peak in the spectra remains temperature independent which confirms that it is not connected to an antiferromagnetic (AFM) spin resonance. The temperature dependent spectra have been measured between 5 K and 61 K within the energy range of ±100 mV as well. The hump structure at 42 mV tends to disappear around 60 K from unknown origin. The temperature dependent quasiparticle interference (QPI) has been studied within the temperature range between 6.7 K and 25 K and analyzed by the Fourier transformation of the measured spectroscopic maps. The dispersion plots in momentum space as a function of temperature show an enhancement of QPI intensity (±5.5 mV) within the superconducting gap at the Fermi level at 6.7 K near q ~ 0. This is interpreted on the basis of Andreev bound state. In both polarities outside of this, a depletion of QPI intensity is noticed between 5.5 mV and around 9 mV. At positive energies, the QPI intensity becomes very rich above 9 mV. The size of the enhanced QPI intensity near the Fermi level, and the edge of the rich QPI intensity beyond 9 mV are found to behave like superconducting order parameter with rising of temperature. Furthermore, an energy mode peaked at around 14 mV appears in the integrated QPI intensity below superconducting Tc (6.7 K). This is consistent with the observed peak at 1st derivative of the dI/dV spectra. In both of these cases, such 14 mV peak is suppressed at normal state (25 K). This mode is therefore directly related to superconductivity in LiFeAs. The off-stoichiometric LiFeAs single crystal with superconducting Tc of 6.5 K has a 10 mV rigid band shift of the Fermi level towards electron doping. The absence of the rich QPI intensity between 9 mV and 17 mV is found compared to the stoichiometric LiFeAs, and hence the 14 mV mode is absent here. This brings us to conclude once more time that such 14 mV energy mode is relevant for superconductivity in LiFeAs.
6

Investigation of the Superconducting and Magnetic Phase Diagram of Off-Stoichiometric LiFeAs

Gräfe, Uwe 01 November 2017 (has links)
At their discovery in 2008, iron pnictide superconductors (IPS) provoked tremendous scientific interest, comparable to the discovery of the cuprate superconductors. So far, IPS reached critical temperatures T c up to 56K. Typically, they show an antiferromagnetic (afm) spin density wave (SDW) which has to be suppressed by doping before superconductivity develops, which then is supported by further doping. Due to the close vicinity of the magnetic and the superconducting (sc) phase, magnetic fluctuations are discussed to be responsible for the sc pairing mechanism in IPS. A special member of the IPS is LiFeAs, because it does not need doping to become sc. It is a stoichiometric superconductor at a T c of 18K. In fact, doping is suppressing its T c . Also, there is no sign of an afm SDW present. Therefore, LiFeAs is a interesting material to study the properties of the IPS in an undisturbed material. In 2010, experiments of the Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden) revealed further surprising properties of LiFeAs. Samples with a Li deficiency undergo a ferromagnetic (fm) phase transition at 165K. Theoretical calculations suggest that fm fluctuations could induce triplet superconductivity in LiFeAs. This would cause a nonvanishing dynamic susceptibility below T c , which is supported by nuclear magnetic resonance (NMR) experiments. This thesis is discussing the results of the IFW Dresden experiments, and concludes that this ferromagnetism is of weak itinerant nature. The origin might be an increase of the density of states (DOS) at the Fermi level, which is causing an instability towards fm order, as proposed by the Stoner model. For further doping experiments, the synthesis procedure of polycrystalline LiFeAs was optimized to get samples with maximum T c and minimum impurities. Therefore, nuclear quadrupole resonance (NQR) was used. The NQR line width is a measure of impurities in the sample. By minimizing the NQR line width, optimal samples were synthesized. These samples are able to compete with the properties of single crystals. To investigate the doping behavior of LiFeAs, a scenario with four different kinds of impurities and deficiencies was performed with the optimized synthesis procedure. 24 different samples were analyzed, by means of NQR and electrical conductivity. It was found that in fact Fe excess is responsible for changing the physical properties of LiFeAs, and not Li deficiency. It is causing a shrinking of the unit cell volume, as seen by X-ray diffraction (XRD) measurements and it causes a decrease of T c . It also leads to a decrease of room temperature resistivity, which is supporting an increase of the DOS at the Fermi level. The NQR frequency is scaling with the amount of Fe excess and can be used to draw the sc and fm phase diagram of off-stoichiometric LiFeAs. At an amount between 3.2 and 3.6% o f Fe excess LiFeAs undergoes the fm transition.
7

Nuclear Magnetic Resonance on Selected Lithium Based Compounds

Rudisch, Christian 26 November 2013 (has links)
This thesis presents the NMR measurements on the single crystals LiMnPO4 and Li0.9FeAs. Therefore, the thesis is divided into two separated sections. The first part reports on the competitive next generation cathode material LiMnPO4 with a stable reversible capacity up to 145 mAh/g and a rather flat discharge voltage curve at 4.1 V. For the basic understanding of the material the magnetic properties have been investigated by a Li and P NMR study in the paramagnetic and antiferromagnetic phase. LiMnPO4 shows a strong anisotropy of the dipolar hyperfine coupling due to the strong local magnetic moments at the Mn site. The corresponding dipole tensor of the Li- and P-nuclei is fully determined by orientation and temperature dependent NMR experiments and compared to the calculated values from crystal structure data. Deviations of the experimentally determined values from the theoretical ones are discussed in terms of Mn disorder which could have an impact on the mobility of the Li ions. The disorder is corroborated by diffuse x-ray diffraction experiments which indicate a shift of the heavy elements in the lattice, namely the Mn atoms. Furthermore, the spin arrangement in the relative strong field of 7.0494 T in the antiferromagnetic state is understood by the NMR measurements. In order to obtain parameters of the Li ion diffusion in LiMnPO4 measurements of the spin lattice relaxation rate were performed. Due to the strong dipolar coupling between the Li-nuclei and the magnetic moments at the Mn site it is difficult to extract parameters which can characterize the diffusive behavior of the Li ions. The second section reports on the AC/DC susceptibility and NMR/NQR studies on Li deficit samples labeled as Li0.9FeAs. LiFeAs belongs to the family of the superconducting Pnictides which are discovered in 2008 by H. Hosono et al. In recent studies the stoichiometric compound reveals triplet superconductivity below Tc ∼ 18 K which demands ferromagnetic coupling of the electrons in the Cooper pairs. In Li0.9FeAs the Li deficit acts like hole doping which suppresses the superconductivity. Then ferromagnetism can arise which is very interesting because of the vicinity to the triplet superconductivity. With the microscopic methods NMR/NQR on the Li and As nuclei, it was investigated where the ferromagnetism can be located in Li0.9FeAs. Recent susceptibility, ESR and µSR studies reveal an internal field due to the ferromagnetism. In contrast, the internal field could not be used to perform zero field NMR measurements. Possible reasons for this discrepancy are discussed. In addition, the automatic insitu AC susceptibility technique by using the NMR radio frequency circuit has been tested by a reference compound Co2TiGa which shows itinerant ferromagnetism. Similar curves are observed for Li0.9FeAs which indicate the existence of itinerant magnetic moments in Li0.9FeAs. Furthermore, in order to determine the size of the dipolar contribution from the magnetic moments of the Fe the dipolar hyperfine coupling tensor was calculated from the crystal structure data. The comparison of the experimental and calculated hyperfine coupling elements reveals transferred hyperfine fields in LiFeAs.
8

Details of 3D electronic structure of some Fe-based superconductors and their superconducting order parameters

Kushnirenko, Yevhen S. 08 January 2020 (has links)
In this thesis, the results of analyzing the electronic structure of two iron-based superconductors: FeSe and LiFeAs are presented. To access the electronic structure, angle-resolved photoemission spectroscopy was used. In our analysis, we focus on the structure of the superconducting gap and the influence of nematicity on the electronic structure. We have revealed changes in the electronic structure of FeSe caused by nematicity in all parts of the Brillouin zone. A scale of these changes is smaller than it was believed earlier. Also, we have observed an anomalous shift of the dispersions in opposite directions with temperature in this material. We have observed anisotropic superconducting gap on all sheets of the Fermi surfaces of both: FeSe and LiFeAs. We have shown that in LiFeAs, rotational symmetry is broken in the superconducting state, which manifests not only in the gap symmetry but also in the shapes of the Fermi surfaces sheets. This result indicates a realization of a novel phenomenon of superconductivity-induced nematicity:1 Iron-based superconductors 1.1 Introduction to iron-based superconductors 1.2 LiFeAs - special iron-based superconductor 1.3 FeSe - structurally simplest iron-based superconductor 2 Angle-Resolved Photoemission 3 Temperature evolution of the electronic structure of FeSe 3.1 Effects of nematicity from low-temperature measurements 3.2 Temperature dependent shift of the dispersions 3.3 Discussion and conclusions 4 Three-dimensional superconducting gap in FeSe 4.1 Superconducting gap on the electron-like pockets 4.2 Superconducting gap on the hole-like pocket 4.3 Discussion and conclusions 5 Superconductivity-induced nematicity in LiFeAs 5.1 Superconducting gap 5.2 Nematicity 5.3 Discussion and conclusions Summary
9

Untersuchung der elektronischen Oberflächeneigenschaften des stöchiometrischen Supraleiters LiFeAs mittels Rastertunnelmikroskopie und -spektroskopie

Schlegel, Ronny 10 October 2014 (has links) (PDF)
Diese Arbeit präsentiert die Ergebnisse einer Rastertunnelmikroskopiestudie an dem stöchiometrischen Supraleiter Lithium-Eisenarsenid (LiFeAs). Topographie- sowie Spektroskopieuntersuchungen an defektfreien Bereichen der Oberfläche zeigen eine Variation der Atompositionen in Abhängigkeit von der Tunnelspannung. Weiterhin wurde die Temperaturabhängigkeit der supraleitenden Energielücke untersucht. Dabei konnte die Signatur einer bosonischen Mode und damit eine Kopplung von Quasiteilchen beobachtet werden. Neben der Untersuchung defektfreier Oberflächen wurden auch Defekte und deren Einfluss auf die supraleitenden Eigenschaften analysiert. Es wurde dabei festgestellt, dass Defekte die supraleitende Energielücke ortsabhängig verändern. Die Defekte lassen sich aufgrund ihrer Symmetrie einer möglichen Gitterposition zuordnen. Eine detaillierte spektroskopische Untersuchung verschiedener Defekte zeigt deren Einfluss auf die Zustandsdichte der supraleitenden Quasiteilchen. Dabei stellt sich heraus, dass As-Defekte die supraleitende Energielücke erheblich beeinflussen. Fe-Defekte zeigen hingegen nur einen geringen Effekt. Für die Bestimmung der Ginzburg-Landau-Kohärenzlänge wurden Messungen im Magnetfeld durchgeführt. Hierfür wird in dieser Arbeit eine geeignete Näherungsfunktion hergeleitet. Die Näherung der differentiellen Leitfähigkeit bei U=0 V in einem Flussschlauch erlaubt die Bestimmung einer Kohärenzlänge von 3,9 nm. Dies entspricht einem oberen kritischen Feld von 21 Tesla. Neben der Bestimmung der Ginzburg-Landau-Kohärenzlänge wird auch eine Analyse des Flussschlauch-Gitters durchgeführt. Dabei zeigt sich, dass der Flussschlauch-Gitterabstand dem eines tetragonalen Gitters entspricht. Allerdings zeigt sich für Magnetfelder größer als 6 Tesla eine zunehmende Unordnung des Flussschlauch-Gitters, was auf eine stärker werdende Flussschlauch-Flussschlauch-Wechselwirkung hindeutet. / This work presents scanning tunneling microscopy and spectroscopy investigations on the stoichiometric superconductor lithium iron arsenide (LiFeAs). To reveal the electronic properties, measurements on defect-free surfaces as well as near defects have been performed. The former shows a shift of atomic position with respect to the applied bias voltage. Furthermore, temperature dependent spectroscopic measurements indicate the coupling of quasiparticles in the vicinity of the superconducting coherence peaks. LiFeAs surfaces influenced by atomic defects show a spacial variation of the superconducting gap. The defects can be characterized by their symmetry and thus can be assigned to a position in the atomic lattice. Detailed spectroscopic investigations of defects reveal their influence on the quasiparticle density of states. In particular, Fe-defects show a small effect on the superconductivity while As-defects strongly disturb the superconducting gap. Measurements in magnetic field have been performed for the determination of the Ginzburg-Landau coherence length . For this purpose, a suitable fit-function has been developed in this work. This function allows to fit the differential conductance of a magnetic vortex at U=0 V. The fit results in a coherence length of 3,9 nm which corresponds to an upper critical field of 21 Tesla. Besides measurements on a single vortex, investigation on the vortex lattice have been performed. The vortex lattice constant follows thereby the predicted behavior of a trigonal vortex lattice. However, for magnetic fields larger than 6 Tesla an increasing lattice disorder sets in, presumably due to vortex-vortex-interactions.
10

Untersuchung der elektronischen Oberflächeneigenschaften des stöchiometrischen Supraleiters LiFeAs mittels Rastertunnelmikroskopie und -spektroskopie

Schlegel, Ronny 29 September 2014 (has links)
Diese Arbeit präsentiert die Ergebnisse einer Rastertunnelmikroskopiestudie an dem stöchiometrischen Supraleiter Lithium-Eisenarsenid (LiFeAs). Topographie- sowie Spektroskopieuntersuchungen an defektfreien Bereichen der Oberfläche zeigen eine Variation der Atompositionen in Abhängigkeit von der Tunnelspannung. Weiterhin wurde die Temperaturabhängigkeit der supraleitenden Energielücke untersucht. Dabei konnte die Signatur einer bosonischen Mode und damit eine Kopplung von Quasiteilchen beobachtet werden. Neben der Untersuchung defektfreier Oberflächen wurden auch Defekte und deren Einfluss auf die supraleitenden Eigenschaften analysiert. Es wurde dabei festgestellt, dass Defekte die supraleitende Energielücke ortsabhängig verändern. Die Defekte lassen sich aufgrund ihrer Symmetrie einer möglichen Gitterposition zuordnen. Eine detaillierte spektroskopische Untersuchung verschiedener Defekte zeigt deren Einfluss auf die Zustandsdichte der supraleitenden Quasiteilchen. Dabei stellt sich heraus, dass As-Defekte die supraleitende Energielücke erheblich beeinflussen. Fe-Defekte zeigen hingegen nur einen geringen Effekt. Für die Bestimmung der Ginzburg-Landau-Kohärenzlänge wurden Messungen im Magnetfeld durchgeführt. Hierfür wird in dieser Arbeit eine geeignete Näherungsfunktion hergeleitet. Die Näherung der differentiellen Leitfähigkeit bei U=0 V in einem Flussschlauch erlaubt die Bestimmung einer Kohärenzlänge von 3,9 nm. Dies entspricht einem oberen kritischen Feld von 21 Tesla. Neben der Bestimmung der Ginzburg-Landau-Kohärenzlänge wird auch eine Analyse des Flussschlauch-Gitters durchgeführt. Dabei zeigt sich, dass der Flussschlauch-Gitterabstand dem eines tetragonalen Gitters entspricht. Allerdings zeigt sich für Magnetfelder größer als 6 Tesla eine zunehmende Unordnung des Flussschlauch-Gitters, was auf eine stärker werdende Flussschlauch-Flussschlauch-Wechselwirkung hindeutet. / This work presents scanning tunneling microscopy and spectroscopy investigations on the stoichiometric superconductor lithium iron arsenide (LiFeAs). To reveal the electronic properties, measurements on defect-free surfaces as well as near defects have been performed. The former shows a shift of atomic position with respect to the applied bias voltage. Furthermore, temperature dependent spectroscopic measurements indicate the coupling of quasiparticles in the vicinity of the superconducting coherence peaks. LiFeAs surfaces influenced by atomic defects show a spacial variation of the superconducting gap. The defects can be characterized by their symmetry and thus can be assigned to a position in the atomic lattice. Detailed spectroscopic investigations of defects reveal their influence on the quasiparticle density of states. In particular, Fe-defects show a small effect on the superconductivity while As-defects strongly disturb the superconducting gap. Measurements in magnetic field have been performed for the determination of the Ginzburg-Landau coherence length . For this purpose, a suitable fit-function has been developed in this work. This function allows to fit the differential conductance of a magnetic vortex at U=0 V. The fit results in a coherence length of 3,9 nm which corresponds to an upper critical field of 21 Tesla. Besides measurements on a single vortex, investigation on the vortex lattice have been performed. The vortex lattice constant follows thereby the predicted behavior of a trigonal vortex lattice. However, for magnetic fields larger than 6 Tesla an increasing lattice disorder sets in, presumably due to vortex-vortex-interactions.

Page generated in 0.047 seconds