• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic interactions of electromagnetic and mechanical fields in electrically conductive anisotropic composites

Barakati, Amir 01 December 2012 (has links)
Recent advances in manufacturing of multifunctional materials have provided opportunities to develop structures that possess superior mechanical properties with other concurrent capabilities such as sensing, self-healing, electromagnetic and heat functionality. The idea is to fabricate components that can integrate multiple capabilities in order to develop lighter and more efficient structures. In this regard, due to their combined structural and electrical functionalities, electrically conductive carbon fiber reinforced polymer (CFRP) matrix composites have been used in a wide variety of applications in most of which they are exposed to unwanted impact-like mechanical loads. Experimental data have suggested that the application of an electromagnetic field at the moment of the impact can significantly reduce the damage in CFRP composites. However, the observations still need to be investigated carefully for practical applications. Furthermore, as the nature of the interactions between the electro-magneto-thermo-mechanical fields is very complicated, no analytical solutions can be found in the literature for the problem. In the present thesis, the effects of coupling between the electromagnetic and mechanical fields in electrically conductive anisotropic composite plates are studied. In particular, carbon fiber polymer matrix (CFRP) composites subjected to an impact-like mechanical load, pulsed electric current, and immersed in the magnetic field of constant magnitude are considered. The analysis is based on simultaneous solving of the system of nonlinear partial differential equations, including equations of motion and Maxwell's equations. Physics-based hypotheses for electro-magneto-mechanical coupling in transversely isotropic composite plates and dimension reduction solution procedures for the nonlinear system of the governing equations have been used to reduce the three-dimensional system to a two-dimensional (2D) form. A numerical solution procedure for the resulting 2D nonlinear mixed system of hyperbolic and parabolic partial differential equations has been developed, which consists of a sequential application of time and spatial integrations and quasilinearization. Extensive computational analysis of the response of the CFRP composite plates subjected to concurrent applications of different electromagnetic and mechanical loads has been conducted. The results of this work verify the results of the previous experimental studies on the subject and yield some suggestions for the characteristics of the electromagnetic load to create an optimum impact response of the composite.
2

Modélisation magnéto-mécanique d'un nano commutateur. Optimisation sous contraintes de fiabilité par dérivation automatique des programmes en Java / Magneto-mechanical modelling of nano switch. Reliability-based design optimization by automatic differentiation in Java.

Pham-Quang, Phuong 11 October 2011 (has links)
Les nano commutateurs magnétiques sont en cours d'étude et ils sont envisageables dans plusieurs domaines d'application comme les interrupteurs d'alimentation, les convertisseurs DC/DC...etc. Partant du besoin de modélisation et d'optimisation avec fiabilité de ces dispositifs, ces travaux de thèse se décomposent en trois axes. Axe modélisation : développement d'un modèle semi analytique pour calculer la déformation avec l'analyse de contact mécanique. Ce modèle a été introduit pour le couplage magnéto-mécanique dans le logiciel de modélisation de MEMS magnétiques MacMMems. Axe dérivation automatique de code : développement de JAP (Java Jacobian Automatic Programming) qui est un outil générique de dérivation d'algorithmes. Il a été appliqué pour le nano commutateur et a été introduit dans les outils de dimensionnement développés au G2Elab pour l'analyse de sensibilité, pour l'optimisation exploitant le Jacobien et aussi pour orienter des systèmes d'équations algébro-différentiels. Axe optimisation : mise en œuvre du modèle et des outils développés pour faire l'étude de sensibilité et l'optimisation sous contraintes de fiabilité du nano commutateur magnétique. / Magnetic nano switches are being studied and they are envisaged in several application areas such as power switches, DC / DC converters …etc. Hence the need for modelling and optimization with reliability of these devices, this thesis work is divided into three areas. Modelling: development of a semi analytical model to calculate the deformation with the analysis of mechanical contact. This model was introduced in the “MacMMems” software dedicated to the modelling of magnetic MEMS. Automatic differentiation : development of JAP (Java Jacobian Automatic Programming) is a generic algorithms derivation program. It has been applied to the nano switch and was introduced in G2Elab design tools for sensitivity analysis, for optimizing and also to solve differential-algebraic systems. Optimization: development the model and tools to study the sensitivity and reliability-based design optimization for magnetic nano switch.
3

Mesure et modélisation multiéchelle du comportement thermo-magnéto-mécanique des alliages à mémoire de forme / Measurement and multiscale modeling of thermo-magneto-mechanical behavior of shape memory alloys

Fall, Mame-Daro 19 June 2017 (has links)
Le comportement des alliages à mémoire de forme (AMF) et des alliages à mémoire de forme magnétiques (AMFM) est régi par les mécanismes de transformation martensitique à l'échelle de la microstructure, à l'origine de leurs propriétés remarquables (mémoire de forme, superélasticité, grandes déformations associées à la réorientation martensitique sous champ magnétique). Les mécanismes de transformation et de réorientation martensitique peuvent être induits par des sollicitations thermiques, magnétiques et / ou mécaniques et de manière couplée. La mise au point d'outils de conception fiables nécessite une meilleure prédictibilité du comportement réel des alliages à mémoire de forme sous sollicitations thermo - magnéto - mécaniques complexes.Le choix d'une modélisation multiaxiale et multi échelle est pertinent. Le modèle reporté présente une formulation unifiée, permettant de simuler aussi bien le comportement des AMF que celui des AMFM.Parallèlement au développement de ce modèle, une étude expérimentale est nécessaire afin d'une part d'identifier les propriétés intrinsèques des matériaux étudiés, et d'autre part de valider les estimations de la modélisation. A cette fin, des mesures de fractions volumiques de phase par diffraction des rayons X in situ ont été entreprises lors de sollicitations thermiques (cycles de chauffage-refroidissement), mécaniques (traction, compression, essais biaxiaux) et magnétiques (champ magnétique unidirectionnel). L'exploitation des résultats de diffractométrie permet une analyse quantitative des fractions volumiques des phases en présence. Celles-ci sont comparées aux estimations du modèle à des fins de validation. / The behavior of shape memory alloys (SMA) and magnetic shape memory alloys (MSMA) is governed by the martensitic transformation mechanisms at the scale of the microstructure. This transformation is at the origin of their remarkable properties (memory effect, superelasticity, large deformations associated with the martensitic reorientation under magnetic field). The martensitic transformation and reorientation mechanisms can be induced by thermal, magnetic and / or mechanical stresses and in a coupled manner. The development of reliable design tools requires a better predictability of the actual behavior of shape memory alloys under complex thermal-magneto-mechanical loading.The choice of multiaxial and multiscale modeling is relevant. The model proposed in this work presents a unified formulation, making possible to simulate both the behavior of SMA and MSMA.In parallel with the development of this model, an experimental study is necessary in order to identify the intrinsic properties of the materials studied and to validate the estimates of the modeling. For this purpose, measurements of phase fractions by in-situ X-ray diffraction were carried out during thermal (heating-cooling cycles), mechanical (tensile, compressive, biaxial) and magnetic (unidirectional magnetic field) loadings. The diffraction patterns allow a quantitative estimation of the volume fractions of the phases. These are compared to model estimates for validation purposes.

Page generated in 0.1057 seconds