Spelling suggestions: "subject:"magnetohydrodynamics"" "subject:"mmagnetohydrodynamics""
181 |
Simulations de l'interaction du vent solaire avec des magnétosphères planétaires : de Mercure à Uranus, le rôle de la rotation planétaire / Simulations of the interaction of the solar wind with planetary magnetospheres : from Mercury to Uranus, the part of the planetary rotationGriton, Léa 10 September 2018 (has links)
La thèse porte sur le rôle de la rotation planétaire dans la structure globale de l'interaction vent solaire/magnétosphère à partir de simulations magnétohydrodynamiques (MHD). Les magnétosphères planétaires du système solaire présentent une incroyable diversité, et notamment dans leurs configurations respectives de l'inclinaison de leur axe magnétique par rapport à leur axe de rotation. La durée des périodes de rotation par rapport au temps de relaxation de chaque magnétosphère diffère aussi d'une planète à l'autre. On distingue ainsi les rotateurs lents (Mercure et la Terre), pour lesquels le temps de relaxation est plus court que la période de rotation, des rotateurs rapides (Jupiter, Saturne, Uranus et Neptune). Dans le cas du rotateur lent Mercure, on s'intéresse à l'influence des paramètres du vent solaire sur la structure globale du champ magnétique et de l'écoulement. En appui à la mission spatiale BepiColombo, nous présentons des simulations effectuées pour deux modèles différents de champ magnétique herméen. Nous détaillons le rôle des fronts d'onde MHD stationnaires, en particulier les fronts stationnaires de mode lent dans la magnétogaine. Saturne présente la particularité d'avoir un axe magnétique parfaitement aligné avec son axe de rotation. C'est donc un cas de rotateur rapide stationnaire, qui nous permet d'étudier la structure globale du champ magnétique et de l'écoulement pour différentes orientations de l'IMF, mais aussi pour différentes vitesses de rotation de la planète. Enfin, le cas d'une configuration quelconque, avec un grand angle entre l'axe magnétique et l'axe de rotation planétaire, est étudié en présence d'un vent solaire magnétisé en s'inspirant de la configuration d'Uranus au solstice et à l'équinoxe. Dans la configuration « solstice », c'est à dire lorsque l'axe de rotation pointe vers le Soleil, on montre qu'une structure de nature alfvénique se développe en hélice dans la queue de la magnétosphère, et que les zones de reconnexion entre le champ magnétique planétaire et l'IMF, qui forment aussi une double hélice, ralentissent la progression de la structure alfvénique. A l'équinoxe, lorsque l'axe de rotation est toujours dans le plan de l’écliptique mais perpendiculaire à la direction Soleil-Uranus, la structure en hélice disparaît. / The topic of the thesis is the part of planetary rotation in the global structure of the solar wind interaction with planetary magnetospheres using MHD simulations. We discuss the distinction between slow and fast rotators from a MHD point of view. In the case of a non-rotating magnetosphere (as is the one of Mercury), the part of standing MHD modes is studied, along with a method to identify them in simulations. A fast-rotating but stationary magnetosphere (inspired by the case of Saturn) is presented in details and provides a good test to validate the new version of the AMRVAC code allowing for any configuration regarding the respective directions of the planetary spin axis, planetary magnetic axis, solar wind inflow direction, and IMF orientation. Finally, a random configuration, with a large angle between the planetary spin and magnetic axis, is analyzed for the first time in presence of a magnetized solar wind, using configurations inspired from the planet Uranus at solstice and equinox.
|
182 |
A-C magneto hydrodynamic instability.McHale, Edward Joseph January 1977 (has links)
Thesis. 1977. Ph.D.--Massachusetts Institute of Technology. Dept. of Electrical Engineering and Computer Science. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / Ph.D.
|
183 |
Improved magnetic feedback system on the fast rotating kink modePeng, Qian January 2016 (has links)
This thesis presents an improved feedback system on HBT-EP and suppression of the fast rotating kink mode using this system. HBT-EP is an experimental tokamak at Columbia University designed to study the magnetohydrodynamic (MHD) instabilities in confined fusion. The most damaging instabilities are global long wavelength kink modes, which break the toroidal symmetry of the magnetic structure and lead to plasma disruption and termination. When a tokamak is surrounded by a close fitting conducting wall, then the single helicity linear dispersion relation of the kink instability has two ominating branches: one is the "slow mode", rotating at the time scale of wall time, known as resistive wall mode (RWM), the other is the fast mode, that becomes unstable near the ideal wall stability limit. Both instabilities are required to be controlled by the feedback system in HBT-EP. In this thesis, improvements have been made upon the previous GPU-based system to enhance the feedback performance and obtain clear evidence of the feedback suppression effect. Specifically, a new algorithm is implemented that maintains an accurate phase shift between the applied perturbation and the unstable mode. This prevents the excitation of the slow kink mode observed in previous studies and results in high gain suppression for fast mode control at all frequency for the first time. When the system is turned off, suppression is lost and the fast mode is observed to grow back. The feedback performance is tested with several wall configurations including the presence of ferritic material. This provides the first comparison of feedback control between the ferritic and stainless wall. The effect of plasma rotation on feedback control is tested by applying a static voltage on a bias probe. As the mode rotation being slowed by the radial current flow, a higher gain on the kink mode is required to achieve feedback suppression. The change in plasma rotation also modifies the plasma response to the external perturbation. The optimal phase shift for suppression changes with the modified response and these observations are consistent with the predictions of the single helicity model.
|
184 |
Etude des cycles d'hystérésis dans les binaires X à trou noir : application à l'objet GX 339-4 / Hysteresis cycles in X-ray binariesMarcel, Grégoire 19 October 2018 (has links)
Les cycles d’hysteresis des binaires X lors de leurs sursauts restent inexpliqués a ce jour. Dans ce travail, nous avons développé les idées du paradigme propose par Ferreira et al. (2006), ou la matière dans le disque accrète de deux manières différentes. Dans le mode standard (SAD, Shakura et Sunyaev 1973), le couple turbulent transporte le moment cinétique radialement vers l’extérieur du disque. Dans le mode éjectant (JED, Ferreira et Pelletier 1995), le disque magnetise produit des jets qui emporte la matière, l’énergie et le moment angulaire verticalement. Dans ce cadre, la transition entre les deux modes est liée a la distribution de champ magnétique dans le disque, une inconnue. Pendant cette thèse, j’ai développé un code capable de résoudre a chaque rayon dans un disque l’équilibre thermique a deux températures pour de multiples jeu de paramètres. Ce code utilise Belm (Belmont et al. 2008 ; Belmont 2009) pour traiter le refroidissement radiatif et créer les spectres de manière auto-cohérente. Les processus de chauffage sont analytiques, ainsi que les processus d’advection, qui sont calcules de l’interieur vers l’exterieur.Grace a ce code, nous avons pu montrer que des solutions de JED reproduisaient très bien les états hard jusqu’à 0.5 luminosités d’Eddington (Marcel et al. 2018a). Il a aussi été démontré que le JED subit un cycle d’hysteresis. En revanche, la luminosité de ce cycle est bien trop faible et la présence inévitable de jets dans la configuration nous pousse a l’utilisation d’un SAD pour la reproduction d’états soft.Fort de ces résultats, j’ai adapte le code a la résolution de configuration de disque hybride, compose d’un JED interne et d’un SAD externe, séparé en un rayon de transition rJ. En jouant sur ce paramètre rJ et sur le taux d’accrétion mdot, nous avons pu montrer que les observations X de cycles typiques pouvaient être pavée. Après des calculs similaires a Heinz et Sunyaev (2003), nous pouvons estimer quel est le flux radio associe a chaque jeu de paramètres. Cela nous a permis de montrer 2 choses. (1) tous les flux radios sont reproductibles a l’aide d’un seul facteur de normalisation commun. (2) le flux radio et la forme du spectre en rayons X sont cohérents : les jeux de paramètres qui reproduisent le mieux chaque forme spectral sont associes aux bon flux radios. Afin d’illustrer ce résultat, 5 états canoniques de l’évolution de GX 339-4 ont ete reproduits : forme spectrale en X et flux radios (Marcel et al. 2018b). Pour finir, en utilisant une simple procédure d’ajustement sur la forme spectrale en X, le cycle de 2010-2011 de GX 339-4 a pu être reproduit. De manière bluffante, les évolutions de rJ et mdot semblent être en accord avec les prédictions théoriques (Esin et al. 1997). De plus, les estimations de flux radio étant cohérentes avec les observations, nous avons décidé de les ajouter directement dans la procédure d’ajustement. L’ajout de cette composante a permis une excellente reproduction simultanée de la radio et des spectres X de manière. C’est, a notre connaissance, la première fois que les phénomènes d’accrétion et d’éjection sont utilisés simultanément. Ces résultats, ainsi que les discussions et implications seront bientôt soumis. / The hysteresis behavior of X-ray binaries during their outbursts remains a mystery. In this work, we developed the paradigm proposed in Ferreira et al. (2006) where the disk material accretes in two possible, mutually exclusive, ways. In the standard accretion disk (SAD, Shakura et Sunyaev 1973) mode, the dominant local torque is due to MHD turbulence that transports radially the disk angular momentum. In the jet-emitting disk (JED, Ferreira et Pelletier 1995) mode, magnetically-driven jets carry away mass, energy and all the angular momentum from the disk. Within our framework, the transition from one mode to another is related to the magnetic field distribution, an unknown yet.In this thesis, I have developped a two-temperature plasma code able to compute the thermal balance at each radius for a large ensemble of disk parameters, as well as the self- consistent global emitted spectrum. The radiative cooling term and related spectrum (comptonized bremsstrahlung and synchrotron emission) are obtained using the Belm code (Belmont et al. 2008 ; Belmont 2009). Heating processes are analytical and due only to accretion, while advection is properly taken into account, carrying outside-in the memory of the outer thermal states.Using this code, we have shown that a JED extending along the entire disk nicely repro- duces hard states up to 0.5 Eddington luminosities (Marcel et al. 2018a). It was also shown that JEDs produce a natural hysteresis cycle. However, the global luminosity of the cycle is insufficient and the inevitable presence of jets in JEDs advocates for an inner SAD configuration in soft states.Based on these results, the code was enhanced to solve hybrid configurations with an internal JED and an external SAD, separated by a given transition radius rJ. Playing on both rJ and the accretion rate mdot, we have shown that X-ray observations of typical cycles can be completely covered. Using a simple synchrotron model similar to that of Heinz et Sunyaev (2003), the radio flux produced by the jets can be estimated, showing two important features. First, all radio observations can be covered by our model. Second, the radio flux and X- ray spectral coverages are consistents : parameter sets that reproduce best each spectral state also account for a consistent associated radio flux. For illustration, 5 canonical states from GX 339-4 have been reproduced in X-ray spectral shape and associated radio fluxes (Marcel et al. 2018b).Finaly, using a simple fitting procedure on X-ray spectral shape, the 2010-2011 cycle from GX 339-4 has been reproduced. Strikingly, the co-evolution of rJ and mdot seems to be in adequacy with initial theoretical expectations (Esin et al. 1997). Moreover, the estimated radio flux evolution being close to observations, we decided to use those within the fitting procedure. Adding radio fluxes constraints in the procedure allowed us to reproduce both the associated X-ray spectral shape and radio fluxes with excellent agreement. This is, to our knowledge, the first time that such an accretion-ejection cycle is reproduced. Those results, as well as discussions and implications will be soon submitted.
|
185 |
Mathematical Formulation of Fusion Energy MagnetohydrodynamicsXiros, Nikolaos I. 20 December 2017 (has links)
Chapter 1 presents the basic principles of Controlled Thermonuclear Fusion, and the approaches to achieve nuclear fusion on Earth. Furthermore, the basic components of the Tokamak, the reactor which will house the fusion reaction, are analyzed. Finally, the chapter ends with a discussion on how the present thesis is related to the Controlled Thermonuclear Fusion. Chapter 2 introduces briefly the basic concepts of the Electromagnetic and Magnetohydrodynamic theories as well as MHD turbulence. Chapter 3 presents a first glance in OpenFOAM CFD library. Chapter 4 introduces the Orszag-Tang vortex flow, which is a benchmark test case for MHD numerical models. Also, the results obtained by the model developed in this thesis are presented and discussed. Chapter 5 describes an analytical solution method for the MHD natural convection in an internally heated horizontal shallow cavity. Also, a finite volume numerical model is presented for solving the aforementioned problem and properly validated. The results of the numerical model are compared with the analytical solutions for a range of Rayleigh and Hartmann numbers. Finally, conclusions based on this work are drawn and recommendations for future work are made.
|
186 |
Forçage électromagnétique dans les métaux liquides / Electromagnetic forcing in liquid metalsPereira, Michaël 30 November 2018 (has links)
Dans ce manuscrit, nous abordons une étude expérimentale de magnétohydrodynamique, traitant plus particulièrement du forçage électromagnétique dans les métaux liquides. L’entraînement d’un fluide conducteur de l’électricité par un champ magnétique se traduit par une conversion d’énergie électromagnétique en énergie cinétique, via le travail de la force de Laplace. La motivation de cette thèse est donc d’examiner comment un champ électromagnétique engendre un écoulement, d’étudier les différentes façons d’assurer un tel transfert d’énergie, ou encore de caractériser les facteurs limitant l’efficacité de ce transfert. Cette thèse présente deux expériences de laboratoire permettant d’étudier deux types de forçage différents : d’une part, l’entraînement d’un fluide par induction à partir d’un champ magnétique variable (analogue au moteur asynchrone), d’autre part un entraînement résultant de la combinaison d’un champ magnétique stationnaire et uniforme et d’un courant électrique constant (analogue au moteur à courant continu). Dans une première partie, une loi prédictive est obtenue pour l’évolution d’un fluide soumis à un champ glissant dans le régime turbulent. On montre que cet entraînement est limité par la turbulence, mais aussi par des mécanismes originaux comme une expulsion de flux magnétique, ou un transfert de l’énergie vers des harmoniques. Cette limitation de l’entrainement se traduit par une borne sur le rendement de cette conversion d’énergie, qui ne peut excéder 50%. Dans une seconde partie, le fluide est soumis à deux champs magnétiques glissants dans des directions opposées, engendrant ainsi un écoulement de cisaillement. Les fluctuations turbulentes brisent alors la symétrie du problème et donnent à la couche de cisaillement un comportement chaotique, révélant notamment un spectre de puissance en 1/f du champ de vitesse à basse fréquence. Cette accumulation d’énergie aux basses fréquences est associée à des renversements chaotiques des structures cohérentes. L’apparition de ce bruit en 1/f est contrôlée par la symétrie du forçage et le taux de turbulence au sein de l’écoulement. Enfin, dans une dernière expérience, une couche mince de métal liquide est forcée par conduction, permettant d’observer pour la première fois en laboratoire un écoulement MHD turbulent de type Képlérien. On observe ainsi que le champ magnétique joue un rôle de laminarisation de l’écoulement et que la transition vers le régime turbulent se fait de manière continue. Ces travaux montrent ainsi qu’il est possible d’isoler plusieurs mécanismes limitant l’entraînement des métaux liquides forcés éléctromagnétiquement et de comprendre plus généralement la dynamique complexe des écoulements MHD. / This manuscript describes an experimental study on magnetohydrodynamics, with a particular focus on the electromagnetic driving of liquid metals. Such electromagnetically-driven flows involve transformation of electromagnetic energy into kinetic energy through the Laplace force. The motivation of the present thesis is to examine how an electromagnetic field generates a flow, to study the different ways to ensure such a transfer of energy, or to characterize what bounds the efficiency of this energy conversion. This thesis presents two laboratory experiments studying two different driving : first, the induction of a fluid motion by a traveling magnetic field (similar to an asynchronous motor), then a driving due to the combination of a stationary and uniform magnetic field and a constant electric current (similar to a DC motor). In the first part of the thesis, a predictive scaling law is obtained for the evolution of a fluid subjected to a traveling field in the turbulent regime. It is shown that this driving is strongly limited by turbulence, but also by various mechanisms such as magnetic flux expulsion, or energy transfers to higher harmonics. This limitation results in a bound on the efficiency of this energy conversion, which can never exceed 50%. In a second part, the fluid is subjected to two magnetic fields traveling in opposite directions, thus generating a shear flow. The turbulent fluctuations break the symmetry of the problem and yields a chaotic behavior of the shear layer, revealing a 1/f power spectrum at low frequency. This accumulation of energy at low frequencies is associated with chaotic reversals of large scale coherent structures. The appearance of this 1/f noise is mediated by the symmetry and the turbulence of the flow. Finally, in a last experiment, a thin disc of liquid metal is driven by conduction, leading to the first observation of MHD Keplerian turbulence in the laboratory. It is thus observed that the magnetic field laminarises the flow and that the transition to Keplerian turbulence is continuous. This work shows that it is possible to isolate several mechanisms characterizing electromagnetically-driven flows and to understand the complex dynamics of MHD flows.
|
187 |
Effet Dynamo : Etudes des mécanismes d'instabilité et de saturation du champ magnétiquePétrélis, Francois 19 December 2002 (has links) (PDF)
La thèse porte sur l'étude de l'instabilité dynamo et est composée de trois parties. La première est une étude du problème d'instabilité linéaire et de l'effet de la turbulence sur le seuil d'instabilité. La turbulence agit comme un bruit multiplicatif sur le champ magnétique et d'autres instabilités entrant dans ce cadre ont été étudiées expérimentalement et analytiquement. La seconde partie traite du problème de saturation du champ magnétique. Dans un cas particulier, une équation d'amplitude pour le mode instable est déterminée près du seuil d'instabilité. Le résultat est alors généralisé à d'autres exemples d'écoulements et diverses lois d'échelle pour l'énergie à saturation sont déterminées. La troisième partie présente l'étude expérimentale d'un écoulement tourbillonnaire de sodium liquide réalisé dans l'expérience VKS (von Karman Sodium). La mesure du champ magnétique dans un écoulement soumis à un champ extérieur permet de mettre en évidence les divers mécanismes d'amplification du champ.
|
188 |
Coupled momentum and heat transport in laminar axisymmetric pipe flow of ferrofluids in non-uniform magnetic fields : theory and simulationCruz-Fierro, Carlos Francisco 02 April 2003 (has links)
The effect of a non-uniform magnetic field on the coupled transport of
momentum and heat is studied for the case of laminar pipe flow of a
magnetically susceptible ferrofluid. The momentum and heat transport
equations are complemented with the necessary electromagnetic terms and
used to develop a computer simulation of the velocity profile and temperature
distribution in the fluid.
Two magnetic field configurations are studied. The first configuration is
produced by a single short solenoid, located around the pipe. The magnetic
field produced has both radial and axial components. For the second
configuration, the electric current is inverted in one half of the solenoid,
creating much stronger field gradients in both directions.
The flow is laminar, driven by a constant pressure difference between
the ends of the pipe. The apparent viscosity of the ferrofluid is modeled as
dependent on temperature and magnetic field. In simulations involving heat
transfer, a section of the pipe is maintained at higher constant temperature.
The rest of the wall is adiabatic.
A Visual-Basic code, FiRMa (Flow in Response to Magnetic field), was
developed to perform the numerical simulations.
For the water-based ferrofluid, results show reduction of average
velocity and small deviations from the parabolic velocity profile as the result of
vortex viscosity. Heat transfer calculations show a decrease in the heat
transfer coefficient and an increase in the fluid exit temperature. These effects
are due to the change in flow pattern and average velocity.
Current research aims for the development of a stable liquid-metal
based ferrofluid, because of the high electric and thermal conductivities. The
FiRMa code is used to examine the expected response of a mercury-based
ferrofluid to the magnetic fields under study. Results show that the
electromagnetic effects on the liquid metal-based ferrofluid are much stronger,
due to induced electric currents and the Lorentz force acting on them. / Graduation date: 2003
|
189 |
Low-temperature supersonic flow control using repetitively pulsed MHD forceNishihara, Munetake, January 2006 (has links)
Thesis (Ph. D.)--Ohio State University, 2006. / Title from first page of PDF file. Includes bibliographical references (p. 114-120).
|
190 |
MHD Turbulence at low magneic Reynolds number : Spectral properties and transition mechanism in a square duct/Turbulence MHD à faible nombre de Reynolds magnétique : Propriétés spectrales et méchanisme de transition dans un conduite carrée.Kinet, Maxime 04 September 2009 (has links)
Magnetohydrodynamics describes the motions of an electrically conducting fluid under the influence of magnetic fields. Such flows are encountered in a large variety of applications, from steel industry to heat exchangers of nuclear fusion reactors.
Here we are concerned with situations where the magnetic field is relatively strong and the flow manifests turbulent motions. The interaction of the fluid with the electromagnetic field is still insufficiently understood and efficient predicting methods are lacking. Our goal is to provide more insight on this problem by making heavy use of numerical methods. In this work, two different classes of problem are investigated.
First we consider that the turbulent character of the fluid is well developed and that solid boundaries are sufficiently far away to be completely neglected. The main effects of a strong magnetic field in that case are to damp the motion and to homogenize the flow along its direction, leading to a quasi two dimensional state. Using numerical simulations we have studied the dynamics of the flow in Fourier space and in particular the non linear energy transfers between turbulent eddies. Further we investigated the scale-by-scale anisotropy and compared various methods to address this quantity. Finally, the evolution of a passive scalar embedded in the flow was analyzed and it turned out that the characteristic anisotropy of the velocity field is reflected in the distribution of the scalar quantity.
In the second problem, the flow in a duct of square cross section subject to a transverse magnetic field has been considered. Here, unlike in the previous situation, the magnetic field has globally a destabilizing effect on the flow, because of the strong inhomogeneities it produces. For instance, high velocity regions develop along the walls that are parallel to the magnetic field. There, we are mostly interested in the possible development of persistent time-dependent fluctuations. It is observed that the transition between laminar and turbulent regimes occurs through at least two distinct bifurcations. The first one takes place at moderate Reynolds number and is characterized by highly organized fluctuations. The second is encountered at higher Reynolds number and presents very strong and localized disturbances.
/Il existe un grand nombre d'applications industrielles dans lesquelles un écoulement de métal liquide est soumis à un champ magnétique. La production d'acier par coulée continue, la fabrication de matériaux semi-conducteurs ou encore les échan-geurs de chaleur des futurs réacteurs à fusion nucléaire en sont de bons exemples. L'interaction du liquide conducteur avec le champ magnétique est à l'origine de nombreux phénomènes inhabituels en hydrodynamique classique et doit dès lors être décrite par la magnétohydrodynamique (ou MHD en abrégé). Le but de ce travail est d'étudier la physique de ces interactions, en se basant sur la résolution numérique des équations qui les gouvernent.
Plusieurs aspects du problème ont été considérés indépendamment. Tout d'abord, l'étude de la turbulence homogène a permis de mettre en evidence les comportements du fluide loin de toute paroi solide. Ceci est mis un oeuvre dans un domaine spatial périodique, où les variables sont représentées par leur série de Fourier. L'influence du champ magnétique dans ce cas consiste à dissiper les fluctuations turbulentes et à rendre le champ de vitesse anisotrope. Les principaux résultats obtenus dans ce cadre concernent la distribution ainsi que le transfert d'énergie dans l'espace spectral, l'anisotropie des différentes échelles turbulentes de l'écoulement ainsi que le transport d'un scalaire passif au sein du fluide.
Dans un deuxième temps, le travail a porté sur l'écoulement dans une conduite rectangulaire soumise à un champ magnétique et dont les parois sont conductrices d'électricité. La particularité de cet écoulement réside dans les zones de vitesse élevées qui se développent le long des parois parallèles au champ magnétique. Celles-ci donnent lieu à un intense cisaillement qui a généralement pour effet de rendre l'écoulement instable. La simulation numérique de ce problème a permis l'étude des instabilités au sein du fluide et de la transition du régime laminaire vers la turbulence.
|
Page generated in 0.0862 seconds