• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamique d’ondes de spin dans des microstructures à base de films de YIG ultra-minces : vers des dispositifs magnoniques radiofréquences / Spin-Wave Dynamics in Microstructures Based on Ultrathin YIG Films : towards Radiofrequency Magnonic Devices

Collet, Martin 21 December 2017 (has links)
Cette thèse porte sur l’étude de la génération, la propagation et la détection d’ondes de spin dans des nanostructures et microstructures élaborées à partir de couches ultra-minces (quelques nanomètres d’épaisseur) de Y₃Fe₅O₁₂ (YIG). Ce travail se trouve à l’interface entre deux thématiques du magnétisme : la magnonique et la spintronique. Grâce aux effets spin-orbite dans des microstrutures YIG|Pt, il a été possible d’étudier et de manipuler la dynamique d’aimantation du YIG, un matériau utilisé de longues dates sous forme de films épais ou billes pour ses très faibles pertes magnétiques. Ce travail ouvre la voie au développement de circuits magnoniques submicroniques soit pour le traitement des signaux hyperfréquences pour les applications télécom soit pour la réalisation de circuits logiques dans la perspective du remplacement de la technologie CMOS (beyond-CMOS). Ce travail repose sur une expertise dans la croissance de films de YIG développée au laboratoire. Les couches ultra-minces de YIG ont été élaborées par ablation laser pulsée. Pour les meilleurs films ayant une épaisseur de 20 nm, la constante d’amortissement de Gilbert caractérisant les pertes des films, estimée par résonance ferromagnétique, est typiquement de α=3x10⁻ 4. Cette avancée cruciale sur l’aspect matériau a ouvert au début de ma thèse un champ de possibilités pour la réalisation et l’étude de dispositifs magnoniques. En effet, la diminution des épaisseurs a permis d’ouvrir le YIG au domaine de la micro/nanofabrication, levant ainsi un verrou technologique vieux de plusieurs décennies. Nous avons donc pu montrer par des mesures inductives et optiques que la propagation d’ondes de spin dans des guides d’onde de YIG de 20 nm d’épaisseur pouvait être faite sur plusieurs dizaines de microns. Prouvant que la structuration des films de YIG n’altère pas la propagation des ondes de spin ouvrant la voie vers la réalisation de circuits magnoniques plus complexes. En structurant ces films de YIG pour obtenir des cristaux magnoniques, il est possible de générer une modulation spatiale du potentiel vu par les ondes de spin, se traduisant par l’apparition de bande interdite (ou gap) dans la transmittance de fréquences. L’étude de la propagation des ondes de spin dans un cristal a montré l’apparition d’un gap par des mesures BLS, accompagnée par une augmentation de l’atténuation pour la longueur d’onde de Bragg. Pour la première fois dans des films ultra-minces de YIG, ce gap montre la possibilité de réaliser une fonctionnalité de filtrage fréquentiel. La preuve de concept a été validée pour un cristal magnonique adapté pour l’intégration à des dispositifs magnoniques. Afin de manipuler et exciter la dynamique d’aimantation du YIG, nous avons dans une deuxième partie réalisée des microstructures à base de bicouche YIG|Pt. L’injection d’un courant électrique dans le Pt donne naissance, grâce à l’effet Hall de spin, à une accumulation de spin qui se couple à l’interface avec l’aimantation du YIG et permet ainsi d’exercer un couple de transfert de spin (STT) et de générer une dynamique d’aimantation du YIG. Nous avons mis en évidence la modulation d’un facteur cinq de la longueur d’atténuation des ondes de spin se propageant dans une piste YIG|Pt grâce à l’amplification des ondes de spin par STT. Ce contrôle efficace de l’atténuation s’avère très intéressant pour le transport d’information porté par les ondes de spin, afin d’amplifier ou supprimer les ondes de spin et donc sélectionner l’information transmise. Par ailleurs, au-delà d’un courant critique d’injection, nous avons pu observer des auto-oscillations de l’aimantation du YIG à la fois dans des plots ou des pistes. Ce résultat confirme la possibilité d’exciter électriquement la dynamique d’aimantation du YIG par STT. Une étude rigoureuse de ce régime a été effectuée dans des microdisques YIG|Pt pour déterminer le comportement des auto-oscillations et imager les modes d’ondes de spin excités dans le YIG. / The aim of this thesis is to study the generation, propagation and detection of spin waves in nanostructures and microstrutures based on ultrathin (a few nanometers thickness) Y₃Fe₅O₁₂ (YIG) films. This work is at the interface between two fields of magnetism: magnonics and spintronics. Thanks to spin-orbit effects in YIG|Pt microstructures, it has been possible to study and manipulate YIG magnetization dynamic, a material known and used for a long time as thick films or spheres due to its very low magnetic losses. This work opens the path towards the development of submicronic magnonic circuits either for processing radiofrequency signals of for the realization of spin waves logic devices for a future beyond-CMOS technology. Prior to the present work, a significant efforts have been made in the lab to grow epitaxial nanometer thick YIG films by pulsed laser deposition (PLD). It was possible to reduce the film thickness down to a few nanometers while preserving excellent magnetic properties. For the best YIG films having a thickness of 20 nm, ferromagnetic resonance measurements yield a Gilbert magnetic damping of α=3x10⁻ 4 . This value is comparable to micrometer thick YIG films grown by liquid phase epitaxy (LPE). This important step forward on the material aspect opened new possibilities for the realization of magnonic devices that can have a large impact on the ICT industry. Indeed, microfabrication of YIG is now possible thanks to the advent of high quality nanometer thick YIG films. Thus, we have observed the propagation of spin waves in 20-nm thick, 2.5 µm wide YIG waveguides over large distances using inductive and optical detection. Spin-wave propagation characteristics are not affected by microstructuration opening the path to the reliable design of complex magnonic circuits.By structuring YIG films to obtain magnonic crystals, it is possible to generate spatial modulation of the potential seen by spin waves, resulting in the appearance of gaps in the transmittance in frequency. To do so, magnonic crystals implemented in form of microscopic waveguides whose width is periodically varied, were fabricated. The study of spin-wave propagation showed the appearance of a gap accompanied by an increase of the spin-wave attenuation length due to Bragg reflection. For the first time in ultrathin YIG films, this gap shows the possibility to realize radiofrequency filtering. In order to manipulate and excite YIG magnetization dynamics, we have designed YIG|Pt microstructures either stripes or microdisks. Thanks to the spin Hall effect, an electrical current passing in Pt generates a transverse spin accumulation coupled at the interface to the YIG’s magnetization making it possible to exert spin transfer torque (STT). We have highlighted an efficient modulation, by a factor of five, of the spin-wave attenuation length. This control on the decay constant proves to be very interesting for the transport of information using spin waves as data carriers, in order to be able to amplify or suppress spin waves and to select transmitted information. In addition, beyond a critical current, we have induced auto-oscillations of YIG magnetization, either in stripes of microdisks, confirming the possibility to electrically excite YIG magnetization dynamics using STT. A rigorous study of this nonlinear regime has been carried out in YIG|Pt microdisks to determine auto-oscillations behavior and to observe directly dynamic modes excited in YIG.
2

Magnetization dynamics and pure spin currents in YIG/normal-metal systems / Dynamique de magnétisation et courants spin purs dans systèmes YIG/métal-normal

Hahn, Christian 17 October 2014 (has links)
Le domaine de recherche de la spintronique vise a concevoir des dispositifs électroniques misant sur le degré de libre de spin pour transporter de l'information. An d'intégrer ces courants de spin dans des dispositifs électroniques, il est particulièrement intéressant d'étudier l'inter-conversion d'un pur courant de spin en un courant de charge par l'effet Hall de spin, ainsi que le transfert de moment angulaire entre les électrons de conduction d'un métal normal (NM) et l'aimantation d'un ferromagnétique (FM) (couple de transfert de spin / pompage de spin). An de mieux comprendre ces différentes interaction, cette thèse se concentre sur l'étude du système hybride constitué de la juxtaposition d'un ferrimagnétique isolant, le grenat d'yttrium fer (YIG), et d'un métal normal _a fort couplage spin-orbite (Pt ou Ta), nécessaire pour bénéficier de la polarisation en spin de l'interface par un courant électrique dans le plan. Nous avons étudié le pompage de spin et la magnétorésistance produite par l'effet Hall de spin a l'interface entre des bicouches de YIG j Pt et YIG j Ta, et ceci sur des lms étendus de YIG de 200 nm d'épaisseur, produits par épitaxie en phase liquide. Nous observons que la tension électrique, produite par l'effet Hall de spin inverse, change de signe entre du Pt et du Ta confirmant ainsi l'inversion des signes de l'angle de Hall entre ces deux matériaux. En outre, en mesurant la variation de la tension de Hall inverse en fonction de l'épaisseur de la couche de Ta, nous avons réussi à borner la longueur de diffusion de spin dans le Ta. Tant le YIG j Pt et le YIG j Ta affiche une variation semblable de la magnétorésistance a effet Hall de spin en fonction de l'orientation du champ magnétique. Pour étudier l'inuence interfaciale du pompage de spin… / Spintronics aims at designing electronic devices which capitalize on the spin degree of freedom to transport information using spin currents. In order to incorporate spin currents intoelectronic devices, it is particularly interesting to study the interconversion from a spin current, the motion of spin angular momentum, to a charge current (Spin Hall Effect) as well as the transfer of spin angular momentum between the conduction electrons of a normal metal (NM) and the magnetization of a ferromagnet (FM) (Spin Transfer Torque/Spin Pumping). To investigate the interplay of those effects this thesis studies hybrid systems of the ferromagnetic insulator Yttrium Iron Garnet and normal metals with large spin-orbit coupling, a prerequisite for spin Hall e_ect. We study spin pumping and spin hall magnetoresistance in YIGjPt and YIGjTa bi-layers using extended _lms of 200 nm thick YIG, grown by liquid phase epitaxy. The inverse spin Hall voltages in Pt and Ta confirm the opposite signs of spin Hall angles in these two materials. Moreover, from the dependence of the inverse spin Hall voltage on the Ta thickness, we constrain the spin di_usion length in Ta. Both the YIGjPt and YIGjTa systems display a similar variation of resistance upon magnetic eld orientation, the spin Hall magnetoresistance. To study the inuence of interfacial spin pumping and a possible reverse e_ect, it is desirable to work with thin _lm thicknesses. A high quality 20 nm thick YIG _lm was grown by pulsed laser deposition, showing a damping similar to that of bulk YIG. We use nano-lithography to pattern series of YIG(20nm) and YIG(20nm)jPt(13nm) discs with diameters between 300 and 700 nm. The ferromagnetic resonance (FMR) spectra of the individual sub-micron sized samples are recorded through magnetic resonance force microscopy. . Passing dc-current through micron sized YIGjPt disks reveal a variation of the FMR linewidth consistent with the geometry and amplitude of the expected SHE transfer torque. In the absence of exciting microwave _elds, a variation in the magnetization is detected when the dc-current reaches the expected threshold for auto oscillations.
3

Pulsed Laser Deposition of Substituted thin Garnet Films for Magnonic Applications / Croissance par ablation laser de films ultrafins de grenats substitués pour les applications magnoniques

Soumah, Lucile 22 January 2019 (has links)
Ce travail de doctorat porte sur la croissance par ablation laser pulsée de films ultrafins de Grenat de Fer et d’Yttrium dopés au Bismuth (BiYIG). Ces films d’épaisseur nanométriques sont caractérisés puis utilisés pour des applications magnon-spintroniques. Cette thèse englobe deux thématiques différentes de la physique : la science des matériaux et les applications magnon-spintroniques.La motivation de cette thèse repose sur le besoin, venant de la communauté magnon-spintronique, d’un nouveau matériau magnétique ultrafin à anisotropie ajustable. En effet, au court des dernières années, une avancée majeure dans le domaine a été l’obtention d’auto-oscillations magnétiques induites par un courant de charge dans un isolant magnétique. Ce résultat a été rendu possible grâce à l’utilisation d’un film ultrafin (20 nm) de Grenat de Fer et d’Yttrium (YIG) possédant de très faibles pertes magnétiques. Ces films ultrafins de YIG sont également intéressants pour la magnonique puisqu’il est aussi possible d’y propager et de manipuler des ondes de spin sur de grandes distances. Cependant, la direction facile d’aimantation dans ces films est fixée par l’anisotropie de forme et n’est pas un paramètre ajustable. Pour pousser plus loin les possibilités dans le domaine de la magnon-spintronique un matériau ultrafin, présentant des pertes magnétiques similaires au YIG, dans lequel il serait possible de stabiliser une anisotropie perpendiculaire serait désirable.La croissance par épitaxie en phase liquide de films de YIG substitués de plusieurs microns d’épaisseur a permis de mettre en évidence que l’anisotropie magnétique pouvait être modifiée par dopage. Notamment que la substitution des atomes d’Yttrium par les atomes de Bismuth sur les sites atomiques dodécaédriques permet d’obtenir une direction facile d’aimantation hors du plan, le BiYIG est également reconnu pour sa forte activité magnéto-optique. Cette thèse présente la croissance par ablation laser pulsée de films ultrafins (7 à 50 nm d’épaisseur) de BiYIG. Dans ces films l’anisotropie magnétique a deux origines : l’anisotropie de croissance et l’anisotropie de contrainte. Dans ces films grâce à la contrainte les deux types anisotropies magnétique (planaire ou perpendiculaire) peuvent être obtenues. La caractérisation dynamique des films montre que la substitution d’Yttrium par le Bismuth n’augmente pas les pertes magnétiques et que l’amortissement de Gilbert dans le BiYIG est comparable à celui du YIG. De plus l’augmentation de l’activité magnéto optique du BiYIG par rapport à celle du YIG rend ce nouveau matériau très intéressant pour des techniques expérimentales impliquant l’interaction lumière/ moment magnétique (BLS, Kerr microscope…).Pour observer des phénomènes spintronique nous avons déposé une couche de Pt. Des mesures de transport comme la magnetoresistance Hall de spin, l’effet Hall de spin inverse ou l’effet Hall anormal témoignent d’un transfert de courant de spin a l’interface BiYIG-Pt. Grâce à l’anisotropie perpendiculaire, il est également possible d’observer de nouveaux phénomènes comme la génération d’onde de spin cohérent à partir d’auto-oscillations. Ce nouvel isolant magnétique combinant une faible épaisseur, un faible amortissement magnétique et une anisotropie magnétique modifiable est donc un matériau prometteur pour des applications magnon-spintroniques et ouvre de nouvelles possibilités pour le domaine. / This PhD work focuses on the Pulsed Laser Deposition (PLD) growth of Bismuth doped Iron Garnet nanometer thick films. Those films are charcterised and used for magnon-spintronics applications. This PhD has two main focuses : material science and magnon-spintronics applications.The aim of this PhD is to fill up the need in the magnon-spintronics community of an ultrathin magnetic material combining low magnetic losses and tunable magnetic anisotropy. Indeed the recent breakthrough in the domain was the ability of generating magnetic auto-oscillations from a charge current in a magnetic insulator. This result has been obtained by using an 20 nm thick film of Yttrium Iron Garnet (YIG) with low magnetic losses (α=2⋅〖10〗^(-4) ). Those ultrafin films of YIG can also be used for spin waves propagation over micrometeter distances. However the easy magnetic axis in those films is set to in plane due to the shape anisotropy and it is not a tunable parameter. To go further in terms of magnon-spintronics applications a perpendicularly easy magnetized low losses ultra-thin magnetic material would be desirable. Liquid Phase Epitaxy growth of micrometer thick doped YIG during the 70’s evidenced that the magnetic anisotropy could be modified by doping or substitution. Especially the substitution of Yttrium atoms by Bismuth ones on the dodecaedric atomic sites allows to stabilise out of plane magnetic anisotropy. Morevover the BiYIG is also known to posses high magneto optical activity.This PhD presents the growth by Pulsed Laser Deposition of ultrathin BiYIG films (7 to 50 nm thick). In those films the uniaxial magnetic anisotropy has two main origins : the magneto elastic and the growth induced anisotropy. Using the strain in those films it is possible to obtain both out of plane and in plane magnetic anisotropy. The dynamical characterisation shows that magnetic losses in the perpendicular easy magnetized films are comparable to the one of YIG ultrathin films. The high magneto optical activity in those films makes the BiYIG ultrathin films suitable for ligth based detection technics involving ligth/magnetism interaction. By sputtering a Pt sublayer on the top of BiYIG ultra thin films we could observ different spintronic phenomena evidencing the transfer of spin current from the metal to the insulator. Low losses and nanometer thickness in perpendicularly easy magnetized BiYIG films allow to observ current induced magnetic auto oscillation in the same fashion as what was previously done with ultrathin YIG. The perpendicular magnetic anisotropy allows however to couple those auto oscillation to spin waves, which was not possible for in plane magnetized YIG fims. This new phenomena is related to the unique properties of the ultrathin BiYIG.BiYIG ultrathin films are thus opening new perspectives in the magnon spintronic commnutiy due to their low thickness and tunable magnetic anisotropy.

Page generated in 0.0431 seconds