• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelagem e controle de robô manipulador de base livre flutuante com dois braços / Modeling and control of dual-arm free-floating manipulator

Bezerra, Rayza Araújo 19 June 2015 (has links)
A pesquisa na área de robótica espacial lida com problemas exclusivos, acarretados pela natureza e características dinâmicas dos sistemas. Isso torna a modelagem uma área de extrema importância para garantir um desempenho satisfatório. A maior característica dos braços robóticos espaciais é que seu movimento perturba a espaçonave na qual está acoplado. Essa propriedade deve ser levada em consideração, especialmente no caso de robôs de base livre flutuante que não possuem controle de posição ou atitude na base. A maior destreza e flexibilidade de manipuladores de múltiplos braços faz com que sua pesquisa seja colocada em foco. Eles possuem maior possibilidade de lidar com cargas maiores e fornecer maior acurácia em tarefas como montagens, reparos, abastecimento, etc. Nesse contexto, o presente trabalho tem como objetivo o desenvolvimento do modelo de um manipulador espacial de base livre flutuante de dois braços. Esse modelo, então, foi aplicado no desenvolvimento de um sistema de controle. A metodologia sugerida facilita, não só a obtenção do modelo, como também a especificação de controladores. Dois esquemas de controle foram desenvolvidos: um no espaço da tarefa e outro no espaço das juntas, com diferentes especificações de trajetórias. A simulação do sistema foi realizada no ambiente Simulink (MATLAB) e os resultados são discutidos, indicando as situações de falha dos controladores especificados. / Space robotics research faces unique problems, which are mainly related to the intrinsic nature and dynamic characteristics of its systems. As a consequence, modelling becomes essential to guarantee the best system result. A important characteristic of space robotic arms is that their movements affect their bases position and attitude. This property must be taken into account, specially in the case of free floating space manipulators which have no control system for the base. High dexterity and flexibility of multi-arm manipulators cause their research to be a focus for the community. With higher loads and accuracy demands, they are more likely to suceed in tasks such as maintenance, assembly, refueling, among others. In that context, this thesis aims to develop a model for a dual-arm free-floating space manipulator. The model, then, is used in the design of a control system. The suggested methodology makes the process easier not only the modelling, but also the controller design. Two control schemes were developed: one in joint and the other in task space, with different trajectories. System simulations were run on Simulink (MATLAB) and the obtained results were discussed, with comments regarding fault situations for the specified control systems.
2

Modelagem e controle de robô manipulador de base livre flutuante com dois braços / Modeling and control of dual-arm free-floating manipulator

Rayza Araújo Bezerra 19 June 2015 (has links)
A pesquisa na área de robótica espacial lida com problemas exclusivos, acarretados pela natureza e características dinâmicas dos sistemas. Isso torna a modelagem uma área de extrema importância para garantir um desempenho satisfatório. A maior característica dos braços robóticos espaciais é que seu movimento perturba a espaçonave na qual está acoplado. Essa propriedade deve ser levada em consideração, especialmente no caso de robôs de base livre flutuante que não possuem controle de posição ou atitude na base. A maior destreza e flexibilidade de manipuladores de múltiplos braços faz com que sua pesquisa seja colocada em foco. Eles possuem maior possibilidade de lidar com cargas maiores e fornecer maior acurácia em tarefas como montagens, reparos, abastecimento, etc. Nesse contexto, o presente trabalho tem como objetivo o desenvolvimento do modelo de um manipulador espacial de base livre flutuante de dois braços. Esse modelo, então, foi aplicado no desenvolvimento de um sistema de controle. A metodologia sugerida facilita, não só a obtenção do modelo, como também a especificação de controladores. Dois esquemas de controle foram desenvolvidos: um no espaço da tarefa e outro no espaço das juntas, com diferentes especificações de trajetórias. A simulação do sistema foi realizada no ambiente Simulink (MATLAB) e os resultados são discutidos, indicando as situações de falha dos controladores especificados. / Space robotics research faces unique problems, which are mainly related to the intrinsic nature and dynamic characteristics of its systems. As a consequence, modelling becomes essential to guarantee the best system result. A important characteristic of space robotic arms is that their movements affect their bases position and attitude. This property must be taken into account, specially in the case of free floating space manipulators which have no control system for the base. High dexterity and flexibility of multi-arm manipulators cause their research to be a focus for the community. With higher loads and accuracy demands, they are more likely to suceed in tasks such as maintenance, assembly, refueling, among others. In that context, this thesis aims to develop a model for a dual-arm free-floating space manipulator. The model, then, is used in the design of a control system. The suggested methodology makes the process easier not only the modelling, but also the controller design. Two control schemes were developed: one in joint and the other in task space, with different trajectories. System simulations were run on Simulink (MATLAB) and the obtained results were discussed, with comments regarding fault situations for the specified control systems.
3

Planejamento de rota e trajetória para manipulador planar de base livre flutuante com dois braços / Path and trajectory planning for a dual-arm planar free-floating manipulator

Serrantola, Wenderson Gustavo 25 September 2018 (has links)
Robôs manipuladores vem desempenhando um importante papel em operações orbitais, e isso foi possível devido ao grande avanço da robótica espacial nas últimas décadas. Porém, o planejamento do movimento ainda é considerado um dos maiores desafios nesse campo, embora diversos métodos e considerações tenham sido propostas para resolver esse problema. As primeiras contribuições na área de planejamento de movimento dependiam de uma representação explícita do espaço de configuração do robô. Dessa forma, o planejamento de movimento para sistemas robóticos com muitos graus de liberdade era impraticável. Para lidar com esse problema, surgiram os métodos baseados em amostragem, dentre eles, o método de Árvore Aleatória de Exploração Rápida - RRT (do inglês, Rapidly- Exploring Random Tree). Estes métodos, ao invés da construção de todo o conjunto de configurações livre de colisões, requerem apenas a verificação de colisão com obstáculos para um conjunto discreto e finito de configurações do robô. Consequentemente, para este tipo de problema, são métodos mais vantajosos em termos computacionais. Com esta motivação, o presente trabalho tem como objetivo o desenvolvimento de um planejador de rota e de um planejador de trajetória para um robô manipulador espacial de base livre flutuante com dois braços, ambos planejadores com suporte a desvio de obstáculos estáticos. O conceito de manipulador dinamicamente equivalente é utilizado para modelar o manipulador espacial. Isso permite que o planejamento seja feito para um manipulador de base fixa subatuado dinamicamente equivalente ao manipulador de base livre flutuante. Os algoritmos baseados em amostragem RRT* e RRTControl disponibilizados na biblioteca OMPL (do inglês, Open Motion Planning Library) foram adaptados para resolver este problema de planejamento. O algoritmo RRT* é usado para o planejamento de rota, e o RRTControl para o planejamento de trajetória. Ambos planejadores utilizam o espaço de configuração das juntas do robô. Para possibilitar que a orientação e posição final dos dois efetuadores do robô pudessem ser especificadas no espaço da tarefa, um algoritmo de cinemática inversa baseado em algoritmo genético também foi desenvolvido para encontrar a solução da cinemática inversa do manipulador. / Robot manipulator has played an important role in orbital missions and this was possible due to the advance of space robotics in recent decades. However, motion planning is still considered one of the biggest challenges of the field though various methods and considerations were proposed by researchers to handle this problem. The first contributions in this field were dependent on an explicit representation of the free configuration space. Consequently, it was impractical to solve the motion planning problem for robotic systems with many degrees of freedom. In order to cope with this limitation, sampling-based methods were proposed, in particular, the Rapidly-Exploring Random Tree – RRT. Sampling-based methods only requires a procedure to verify collision with obstacles for a discrete amount of robot configuration during planning. Therefore, they are more advantageous in computational terms. In this work a path planner and a trajectory planner were developed for a free-floating planar manipulator with two arms with support for static obstacle avoidance. The Dynamically Equivalent Manipulator approach was used for modelling the robot. Thus, the planners were developed based on a fixed-base underactuated manipulator model which is dynamically equivalent to the free-floating manipulator. The sampling-based algorithms RRT* and RRTControl of the Open Motion Planning Library (OMPL) were adapted to solve this motion planning problem. The RRT* were used for path planning, and the RRTControl for trajectory planning, both carried out in the robot joint space. As the desired orientations and positions of the two end-effectors were specified in the task-space, a genetic algorithm was also developed to compute the inverse kinematics of the manipulator.
4

Planejamento de rota e trajetória para manipulador planar de base livre flutuante com dois braços / Path and trajectory planning for a dual-arm planar free-floating manipulator

Wenderson Gustavo Serrantola 25 September 2018 (has links)
Robôs manipuladores vem desempenhando um importante papel em operações orbitais, e isso foi possível devido ao grande avanço da robótica espacial nas últimas décadas. Porém, o planejamento do movimento ainda é considerado um dos maiores desafios nesse campo, embora diversos métodos e considerações tenham sido propostas para resolver esse problema. As primeiras contribuições na área de planejamento de movimento dependiam de uma representação explícita do espaço de configuração do robô. Dessa forma, o planejamento de movimento para sistemas robóticos com muitos graus de liberdade era impraticável. Para lidar com esse problema, surgiram os métodos baseados em amostragem, dentre eles, o método de Árvore Aleatória de Exploração Rápida - RRT (do inglês, Rapidly- Exploring Random Tree). Estes métodos, ao invés da construção de todo o conjunto de configurações livre de colisões, requerem apenas a verificação de colisão com obstáculos para um conjunto discreto e finito de configurações do robô. Consequentemente, para este tipo de problema, são métodos mais vantajosos em termos computacionais. Com esta motivação, o presente trabalho tem como objetivo o desenvolvimento de um planejador de rota e de um planejador de trajetória para um robô manipulador espacial de base livre flutuante com dois braços, ambos planejadores com suporte a desvio de obstáculos estáticos. O conceito de manipulador dinamicamente equivalente é utilizado para modelar o manipulador espacial. Isso permite que o planejamento seja feito para um manipulador de base fixa subatuado dinamicamente equivalente ao manipulador de base livre flutuante. Os algoritmos baseados em amostragem RRT* e RRTControl disponibilizados na biblioteca OMPL (do inglês, Open Motion Planning Library) foram adaptados para resolver este problema de planejamento. O algoritmo RRT* é usado para o planejamento de rota, e o RRTControl para o planejamento de trajetória. Ambos planejadores utilizam o espaço de configuração das juntas do robô. Para possibilitar que a orientação e posição final dos dois efetuadores do robô pudessem ser especificadas no espaço da tarefa, um algoritmo de cinemática inversa baseado em algoritmo genético também foi desenvolvido para encontrar a solução da cinemática inversa do manipulador. / Robot manipulator has played an important role in orbital missions and this was possible due to the advance of space robotics in recent decades. However, motion planning is still considered one of the biggest challenges of the field though various methods and considerations were proposed by researchers to handle this problem. The first contributions in this field were dependent on an explicit representation of the free configuration space. Consequently, it was impractical to solve the motion planning problem for robotic systems with many degrees of freedom. In order to cope with this limitation, sampling-based methods were proposed, in particular, the Rapidly-Exploring Random Tree – RRT. Sampling-based methods only requires a procedure to verify collision with obstacles for a discrete amount of robot configuration during planning. Therefore, they are more advantageous in computational terms. In this work a path planner and a trajectory planner were developed for a free-floating planar manipulator with two arms with support for static obstacle avoidance. The Dynamically Equivalent Manipulator approach was used for modelling the robot. Thus, the planners were developed based on a fixed-base underactuated manipulator model which is dynamically equivalent to the free-floating manipulator. The sampling-based algorithms RRT* and RRTControl of the Open Motion Planning Library (OMPL) were adapted to solve this motion planning problem. The RRT* were used for path planning, and the RRTControl for trajectory planning, both carried out in the robot joint space. As the desired orientations and positions of the two end-effectors were specified in the task-space, a genetic algorithm was also developed to compute the inverse kinematics of the manipulator.

Page generated in 0.0717 seconds