• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 1
  • 1
  • Tagged with
  • 34
  • 34
  • 14
  • 13
  • 12
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

An airborne investigation of the structure of the atmospheric boundary layer over the tropical ocean

Donelan, Mark Anthony January 1970 (has links)
Across the air-sea interface there is a transfer of momentum, heat and moisture. Knowledge of these is essential to the understanding of oceanic and atmospheric circulations. This study is an investigation of the vertical turbulent transfers of momentum, heat and moisture in the boundary layer of the atmosphere using an instrumented light aircraft. The data were collected at several altitudes between 18 m and 500 m in the Atlantic trade wind zone east of the island of Barbados. Since the tropical ocean is the primary source of heat input to the atmospheric heat engine, good estimates, in this region, of the transfers of heat and moisture and their vertical variations are essential to any global numerical atmospheric prediction scheme. The fluctuations of the velocity components, temperature and humidity and the transfers of momentum, heat and moisture were investigated, primarily by means of their spectra and cospectra. It was found that: ninety percent of the heat input to the atmosphere was in the form of latent heat; the sensible heat flux was positive (upward) at the small scales generated near the surface and negative at the large scales due to subsiding air; the latent heat flux was positive at all scales and similar in spectral distribution to the momentum flux; the flow appeared to be anisotropic even at scales one hundred times smaller than the distance from the boundary; the drag coefficient, from direct measurements of the momentum flux (or stress), was (1.45±0.08) x 10⁻³; shear generated turbulence was not entirely dissipated locally. / Science, Faculty of / Earth, Ocean and Atmospheric Sciences, Department of / Graduate
32

On the zonal atmospheric circulation over the Pacific Ocean near 10 ̊S

Cornejo Garrido, Angel Gustavo January 1976 (has links)
Thesis. 1976. M.S.--Massachusetts Institute of Technology. Dept. of Meteorology. / Microfiche copy available in Archives and Science. / Bibliography: leaves 119-122. / by Angel G. Cornejo Garrido. / M.S.
33

Evolution of boundary layer height in response to surface and mesoscale forcing

Moore, Matthew J. 03 1900 (has links)
Approved for public release, distribution is unlimited / This thesis study focuses on understanding the dissipation processes of the stratocumulus deck after sunrise. This objective is met through careful analyses of observational data as well as model simulations. Measurements from the Marine Atmosphere Measurement Lab (MAML) of the Naval Postgraduate School (NPS) are used in this study. In particular, the half-hourly wind profiler/Radio Acoustic Sounding System (RASS) measurements were used to determine the boundary layer top and the evolution of the boundary layer mean thermodynamic properties during the cloud breakup period. Measurements from a laser ceilometer and the routine surface measurements are also used to detect the variation of cloud base height, the evolution of the cloud deck, and the onset of sea breeze. These measurements revealed the increase of the boundary layer depth after sunrise followed by a decrease of the boundary layer depth after the onset of the sea breeze, which points to the role of surface heating and sea breeze development in modulating cloud evolution. The effects of surface heating and sea breeze are further tested using a 1-dimensional mixed layer model modified for coastal land surfaces. / Lieutenant Commander, United States Navy
34

Paleo-proxies for the thermocline and lysocline over the last glacial cycle in the Western Tropical Pacific

Leech, Peter Joseph 20 September 2013 (has links)
The shape of the thermocline and the depth of the lysoline in the western tropical Pacific are both influenced by the overlying atmosphere, and both the shape of thermocline and the depth of the lysocline can be reconstructed from foraminifera-based paleo-proxies. Paleoclimate proxy evidence suggests a southward shift of the Intertropical Convergence Zone (ITCZ) during times of Northern Hemisphere cooling, including the Last Glacial Maximum (LGM), 19-23 ka before present. However, evidence for movement over the Pacific has mainly been limited to precipitation reconstructions near the continents, and the position of the Pacific marine ITCZ is less well constrained. In this study, I address this problem by taking advantage of the fact that the upper ocean density structure reflects the overlying wind field. I reconstruct changes in the upper ocean density structure during the LGM using oxygen isotope measurements on the planktonic foraminifera G. ruber and G. tumida in a transect of sediment cores from the Western Tropical Pacific. The data suggest a ridge in the thermocline just north of the present-day ITCZ persists for at least part of the LGM, and a structure in the Southern Hemisphere that differs from today. The reconstructed structure is consistent with that produced in a General Circulation Model with both a Northern and Southern Hemisphere ITCZ. I also attempt to reconstruct the upper ocean density structure for Marine Isotope Stages 5e and 6, the interglacial and glacial periods, respectively, previous to the LGM. The data show a Northern Hemisphere thermocline ridge for both of these periods. There is insufficient data to draw any conclusions about the Southern Hemisphere thermocline. Using the same set of sediment cores, I also attempt to reconstruct lysocline depth over the last 23,000 years using benthic foraminiferal carbon isotope ratios, planktonic foraminiferal masses, and sediment coarse fraction percentage. Paleoclimate proxy evidence and modeling studies suggest that the deglaciation following the LGM is associated with a deepening of the lysocline and an increase in sedimentary calcite preservation. Although my data lack the resolution to constrain the depth of the lysocline, they do show an increase in calcite preservation during the last deglaciation, consistent with lysocline deepening as carbon moves from the deep ocean to the atmosphere.

Page generated in 0.0808 seconds