• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Visualisering av marknadsstatistik / Market statistics visualization

Gräns, Gustaf January 2011 (has links)
The purpose of this master thesis was to explore and develop prototypes for visualization of trade statistics in a market surveilance application. In such an anapplication a large amount of information is processed. This information is then summarized and presented to the market surveillance staff. The practical part of this thesis was done at Scila AB in Stockholm. Three prototypes were developed based on modern visualization methods. Another graph that already existed in the application was improved. The graphs were then evaluated with the help of simulated market data. Two of the graphs were also evaluated using real market data. Finally the graphs were demonstrated to market surveillance staff from an exchange in Stockholm. The conclusion was that two of the graphs have potential to be useful while the same can't be said for the other two.
2

Explainable Deep Learning Methods for Market Surveillance / Förklarbara Djupinlärningsmetoder för Marknadsövervakning

Jonsson Ewerbring, Marcus January 2021 (has links)
Deep learning methods have the ability to accurately predict and interpret what data represents. However, the decision making of a deep learning model is not comprehensible for humans. This is a problem for sectors like market surveillance which needs clarity in the decision making of the used algorithms. This thesis aimed to investigate how a deep learning model can be constructed to make the decision making of the model humanly comprehensible, and to investigate the potential impact on classification performance. A literature study was performed and publicly available explanation methods were collected. The explanation methods LIME, SHAP, model distillation and SHAP TreeExplainer were implemented and evaluated on a ResNet trained on three different time-series datasets. A decision tree was used as the student model for model distillation, where it was trained with both soft and hard labels. A survey was conducted to evaluate if the explanation method could increase comprehensibility. The results were that all methods could improve comprehensibility for people with experience in machine learning. However, none of the methods could provide full comprehensibility and clarity of the decision making. The model distillation reduced the performance compared to the ResNet model and did not improve the performance of the student model. / Djupinlärningsmetoder har egenskapen att förutspå och tolka betydelsen av data. Däremot så är djupinlärningsmetoders beslut inte förståeliga för människor. Det är ett problem för sektorer som marknadsövervakning som behöver klarhet i beslutsprocessen för använda algoritmer. Målet för den här uppsatsen är att undersöka hur en djupinlärningsmodell kan bli konstruerad för att göra den begriplig för en människa, och att undersöka eventuella påverkan av klassificeringsprestandan. En litteraturstudie genomfördes och publikt tillgängliga förklaringsmetoder samlades. Förklaringsmetoderna LIME, SHAP, modelldestillering och SHAP TreeExplainer blev implementerade och utvärderade med en ResNet modell tränad med tre olika dataset. Ett beslutsträd användes som studentmodell för modelldestillering och den blev tränad på båda mjuka och hårda etiketter. En undersökning genomfördes för att utvärdera om förklaringsmodellerna kan förbättra förståelsen av modellens beslut. Resultatet var att alla metoder kan förbättra förståelsen för personer med förkunskaper inom maskininlärning. Däremot så kunde ingen av metoderna ge full förståelse och insyn på hur beslutsprocessen fungerade. Modelldestilleringen minskade prestandan jämfört med ResNet modellen och förbättrade inte prestandan för studentmodellen.
3

Federated Learning for Market Surveillance / Federerat Lärande för Marknadsövervakning

Song, Philip January 2022 (has links)
The increasing complexity of trading strategies, when combined with machine learning models, forces market surveillance corporations to develop increasingly sophisticated methods for recognizing potential misuse. One strategy is to employ traders’ weapons against themselves, namely machine learning. However, the data utilized in market surveillance is highly sensitive, what may be available for machine learning is limited. In this thesis, we examine how federated learning for time series data can be used to identify potential market abuse while maintaining client privacy and data security. We are interested in developing a time-series-specific neural network employing federated learning. We demonstrate that when this strategy is used, the performance of detecting potential market abuse is comparable to that of the standard data centralized approach. Specifically, a non-federated model, a federated model, and a federated model with extra data privacy and security protection are evaluated and compared. Each model utilize an LSTM autoencoder to identify market abuse. The results demonstrate that a federated model’s performance in detecting possible market abuse is comparable to that of a non-federated model. Moreover, a federated approach with extra data privacy and security experienced a slight performance loss but is still a competitive model in comparison to the other models. Although this approach results in increased privacy and security, there is a limit to how much privacy and security can be ensured, as excessive privacy led to extremely poor performance. Federated learning offers the ability to increase data privacy and security with little performance decrease. / Den ökande komplexiteten handelsstrategier, i kombination med maskininlärning modeller, tvingar marknadsövervakning företag att utveckla allt mer sofistikerade metoder för att identifiera potentiellt marknadsmissbruk. En strategi är att använda handlarnas vapen mot sig själva, nämligen maskininlärning. Däremot, data som används inom marknadsövervakning är mycket känslig och vad som kan finnas tillgängligt för maskininlärning är begränsat.I den här studien undersöker vi hur federerat lärande för tidsseriedata kan användas till att identifiera potentiellt marknadsmissbruk samtidigt som klienternas integritet och datasäkerhet bibehålls. Vi är intresserade av att utveckla ett tidsserie-specifikt neuralt nätverk med hjälp av federated inlärning. Vi visar att när denna strategi används är prestanda för att upptäcka potentiellt marknadsmissbruk jämförbart med det för den vanliga data-centraliserade metoden. Specifikt, en icke-federerad modell, en federerad modell och en federerad modell med extra dataintegritet och säkerhet utvärderas och jämförs. Varje modell använder en LSTM-Autoencoder för att identifiera marknadsmissbruk. Resultaten visar att en federerad modells prestanda när det gäller att upptäcka eventuellt marknadsmissbruk är jämförbar med en icke-federerad modell. Dessutom, ett federerat tillvägagångssätt med extra dataintegritet upplevde en liten prestandaförlust men är fortfarande en konkurrenskraftig modell i jämförelse med andra modeller. Även om detta tillvägagångssätt resulterar i ökad integritet och säkerhet, finns det en gräns för hur mycket som kan säkerställas. Federated learning möjliggör ökad datasekretess och säkerhet med liten prestandasänkning.
4

Market Surveillance Using Empirical Quantile Model and Machine Learning / Marknadsövervakning med hjälp av empirisk kvantilmodell och maskininlärning

Landberg, Daniel January 2022 (has links)
In recent years, financial trading has become more available. This has led to more market participants and more trades taking place each day. The increased activity also implies an increasing number of abusive trades. To detect the abusive trades, market surveillance systems are developed and used. In this thesis, two different methods were tested to detect these abusive trades on high-dimensional data. One was based on empirical quantiles, and the other was based on an unsupervised machine learning technique called isolation forest. The empirical quantile method uses empirical quantiles on dimensionally reduced data to determine if a datapoint is an outlier or not. Principal Component Analysis (PCA) is used to reduce the dimensionality of the data and handle the correlation between features.Isolation forest is a machine learning method that detects outliers by sorting each datapoint in a tree structure. If a datapoint is close to the root, it is more likely to be an outlier. Isolation forest have been proven to detect outliers in high-dimensional datasets successfully, but have not been tested before for market surveillance. The performance of both the quantile method and isolation forest was tested by using recall and run-time.  The conclusion was that the empirical quantile method did not detect outliers accurately when all dimensions of the data were used. The method most likely suffered from the curse of dimensionality and could not handle high dimensional data. However, the performance increased when the dimensionality was reduced. Isolation forest performed better than the empirical quantile method and detected 99% of all outliers by classifying 226 datapoints as outliers out of a dataset with 184 true outliers and 1882 datapoints. / Under de senaste åren har finansiell handel blivit mer tillgänglig för allmänheten. Detta har lett till fler deltagare på marknaderna och att fler affärer sker varje dag. Den ökade aktiviteten innebär också att de missbruk som förekommer ökar. För att upptäcka otillåtna affärer utvecklas och används marknadsövervakningssystem. I den här avhandlingen testades två olika metoder för att upptäcka dessa missbruk utifrån högdimensionell data. Den ena baserades på empiriska kvantiler och den andra baserades på en oövervakad maskininlärningsteknik som kallas isolationsskog. Den empiriska kvantilmetoden använder empiriska kvantiler på dimensionellt reducerad data för att avgöra om en datapunkt är ett extremvärde eller inte. För att reducera dimensionen av datan, och för att hantera korrelationen mellan variabler, används huvudkomponent analys (HKA).Isolationsskog är en maskininlärnings metod som upptäcker extremvärden genom att sortera varje datapunkt i en trädstruktur. Om en datapunkt är nära roten är det mer sannolikt att det är en extremvärde. Isolationsskog har visat sig framgångsrikt upptäcka extremvärden i högdimensionella datauppsättningar, men har inte testats för marknadsövervakning tidigare. För att mäta prestanda för båda metoderna användes recall och körtid. Slutsatsen är att den empiriska kvantilmetoden inte hittade extremvärden när alla dimensioner av datan användes. Metoden led med största sannolikhet av dimensionalitetens förbannelse och kunde inte hantera högdimensionell data, men när dimensionaliteten reducerades ökade prestandan. Isolationsskog presterade bättre än den empiriska kvantilmetoden och lyckades detektera 99% av alla extremvärden genom att klassificera 226 datapunkter som extremvärden ur ett dataset med 184 verkliga extremvärden och 1882 datapunkter.

Page generated in 0.0733 seconds