• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 139
  • 23
  • 21
  • 20
  • 11
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 275
  • 275
  • 240
  • 69
  • 48
  • 46
  • 32
  • 28
  • 27
  • 26
  • 25
  • 24
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Anomaly Detection From Personal Usage Patterns In Web Applications

Vural, Gurkan 01 December 2006 (has links) (PDF)
The anomaly detection task is to recognize the presence of an unusual (and potentially hazardous) state within the behaviors or activities of a computer user, system, or network with respect to some model of normal behavior which may be either hard-coded or learned from observation. An anomaly detection agent faces many learning problems including learning from streams of temporal data, learning from instances of a single class, and adaptation to a dynamically changing concept. The domain is complicated by considerations of the trusted insider problem (recognizing the difference between innocuous and malicious behavior changes on the part of a trusted user). This study introduces the anomaly detection in web applications and formulates it as a machine learning task on temporal sequence data. In this study the goal is to develop a model or profile of normal working state of web application user and to detect anomalous conditions as deviations from the expected behavior patterns. We focus, here, on learning models of normality at the user behavioral level, as observed through a web application. In this study we introduce some sensors intended to function as a focus of attention unit at the lowest level of a classification hierarchy using Finite State Markov Chains and Hidden Markov Models and discuss the success of these sensors.
202

Segmental discriminative analysis for American Sign Language recognition and verification

Yin, Pei 06 April 2010 (has links)
This dissertation presents segmental discriminative analysis techniques for American Sign Language (ASL) recognition and verification. ASL recognition is a sequence classification problem. One of the most successful techniques for recognizing ASL is the hidden Markov model (HMM) and its variants. This dissertation addresses two problems in sign recognition by HMMs. The first is discriminative feature selection for temporally-correlated data. Temporal correlation in sequences often causes difficulties in feature selection. To mitigate this problem, this dissertation proposes segmentally-boosted HMMs (SBHMMs), which construct the state-optimized features in a segmental and discriminative manner. The second problem is the decomposition of ASL signs for efficient and accurate recognition. For this problem, this dissertation proposes discriminative state-space clustering (DISC), a data-driven method of automatically extracting sub-sign units by state-tying from the results of feature selection. DISC and SBHMMs can jointly search for discriminative feature sets and representation units of ASL recognition. ASL verification, which determines whether an input signing sequence matches a pre-defined phrase, shares similarities with ASL recognition, but it has more prior knowledge and a higher expectation of accuracy. Therefore, ASL verification requires additional discriminative analysis not only in utilizing prior knowledge but also in actively selecting a set of phrases that have a high expectation of verification accuracy in the service of improving the experience of users. This dissertation describes ASL verification using CopyCat, an ASL game that helps deaf children acquire language abilities at an early age. It then presents the "probe" technique which automatically searches for an optimal threshold for verification using prior knowledge and BIG, a bi-gram error-ranking predictor which efficiently selects/creates phrases that, based on the previous performance of existing verification systems, should have high verification accuracy. This work demonstrates the utility of the described technologies in a series of experiments. SBHMMs are validated in ASL phrase recognition as well as various other applications such as lip reading and speech recognition. DISC-SBHMMs consistently produce fewer errors than traditional HMMs and SBHMMs in recognizing ASL phrases using an instrumented glove. Probe achieves verification efficacy comparable to the optimum obtained from manually exhaustive search. Finally, when verifying phrases in CopyCat, BIG predicts which CopyCat phrases, even unseen in training, will have the best verification accuracy with results comparable to much more computationally intensive methods.
203

A steady-state visually evoked potential based brain-computer interface system for control of electric wheelchairs.

Stamps, Kenyon. January 2012 (has links)
M. Tech. Electrical Engineering / Determines whether Hidden Markov models (HMM) can be used to classify steady state visual evoked electroencephalogram signals in a BCI system. This is for the purpose of aiding disabled people in driving a wheelchair.
204

Composable, Distributed-state Models for High-dimensional Time Series

Taylor, Graham William 03 March 2010 (has links)
In this thesis we develop a class of nonlinear generative models for high-dimensional time series. The first key property of these models is their distributed, or "componential" latent state, which is characterized by binary stochastic variables which interact to explain the data. The second key property is the use of an undirected graphical model to represent the relationship between latent state (features) and observations. The final key property is composability: the proposed class of models can form the building blocks of deep networks by successively training each model on the features extracted by the previous one. We first propose a model based on the Restricted Boltzmann Machine (RBM) that uses an undirected model with binary latent variables and real-valued "visible" variables. The latent and visible variables at each time step receive directed connections from the visible variables at the last few time-steps. This "conditional" RBM (CRBM) makes on-line inference efficient and allows us to use a simple approximate learning procedure. We demonstrate the power of our approach by synthesizing various motion sequences and by performing on-line filling in of data lost during motion capture. We also explore CRBMs as priors in the context of Bayesian filtering applied to multi-view and monocular 3D person tracking. We extend the CRBM in a way that preserves its most important computational properties and introduces multiplicative three-way interactions that allow the effective interaction weight between two variables to be modulated by the dynamic state of a third variable. We introduce a factoring of the implied three-way weight tensor to permit a more compact parameterization. The resulting model can capture diverse styles of motion with a single set of parameters, and the three-way interactions greatly improve its ability to blend motion styles or to transition smoothly among them. In separate but related work, we revisit Products of Hidden Markov Models (PoHMMs). We show how the partition function can be estimated reliably via Annealed Importance Sampling. This enables us to demonstrate that PoHMMs outperform various flavours of HMMs on a variety of tasks and metrics, including log likelihood.
205

Probabilistic Methods for Computational Annotation of Genomic Sequences / Probabilistische Methoden für computergestützte Genom-Annotation

Keller, Oliver 26 January 2011 (has links)
No description available.
206

Ląstelių plyšinės jungties modeliavimas naudojant Markovo grandines / Modelling of the Gap Junction of Cells Using Markov Chains

Sakalauskaitė, Aurelija 31 August 2011 (has links)
Šiame darbe pateikiama ląstelių plyšinės jungties Markovo modelių sudarymo metodika, apimanti perėjimo tikimybių skaičiavimą panaudojant nepriklausomų J. Bernulio bandymų schemą, stacionariųjų tikimybių skaičiavimą ir plyšinės jungties laidumo priklausomybės nuo įtampos skaičiavimus. Tariama, kad plyšinė jungtis sudaryta iš daugybės lygiagrečiai sujungtų kanalų (pvz., 1000). Kiekvienas kanalas sudarytas iš 2 nuosekliai sujungtų puskanalių (koneksonų), o kiekvienas koneksonas sudarytas iš 6 lygiagrečiai sujungtų vienetų (koneksinų). Kiekvienas koneksinas gali būti atviroje arba uždaroje būsenoje, kuri priklauso nuo kanalo įtampos. Modelių, sukurtų naudojant šią metodiką, adekvatumas patikrintas lyginant plyšinės jungties modeliavimo rezultatus su imitacinio modeliavimo (programų, kurias atliko Nerijus Paulauskas ir Saulius Vaičeliūnas (KTU Informatikos fakulteto magistrantai)) rezultatais, kurie patikrinti su eksperimentų rezultatais. Sukurta Markovo modelių metodika panaudota kuriant plyšinės jungties modelius, kai koneksinai aprašomi 3 būsenomis: uždara, atvira ir visiškai uždara. / In this paper the methodology of composing of Markov models of the gap junction of cells is introduced. This methodology contains of computing of transition probabilities using scheme of independent J. Bernoulli trials, computing of stationary probabilities and computing of the conductance of the gap junction dependence on a voltage. It is considered that the gap junction consists of a lot of channels (for example, 1000), joined parallel with each other. Each channel consists of two subchannels (connexons), joined in series, and each connexon consists of 6 units (connexins), joined parallel with each other. Each connexin can be in an open or a closed state. State of a connexin depends on a voltage that is going through the channel. The adequacy of models that were created using this methodology is tested comparing the results of modelling of the gap junction using Markov chains with the results of the imitational modelling (programs that were done by Nerijus Paulauskas and Saulius Vaičeliūnas (postgraduate students from Informatics faculty, KTU)). The latter results were tested with the results of experiments. In this paper the methodology of created Markov models was used creating the models of gap junction, where a connexin is described being in 3 states: closed, open and deep closed.
207

Automatic speech segmentation with limited data / by D.R. van Niekerk

Van Niekerk, Daniel Rudolph January 2009 (has links)
The rapid development of corpus-based speech systems such as concatenative synthesis systems for under-resourced languages requires an efficient, consistent and accurate solution with regard to phonetic speech segmentation. Manual development of phonetically annotated corpora is a time consuming and expensive process which suffers from challenges regarding consistency and reproducibility, while automation of this process has only been satisfactorily demonstrated on large corpora of a select few languages by employing techniques requiring extensive and specialised resources. In this work we considered the problem of phonetic segmentation in the context of developing small prototypical speech synthesis corpora for new under-resourced languages. This was done through an empirical evaluation of existing segmentation techniques on typical speech corpora in three South African languages. In this process, the performance of these techniques were characterised under different data conditions and the efficient application of these techniques were investigated in order to improve the accuracy of resulting phonetic alignments. We found that the application of baseline speaker-specific Hidden Markov Models results in relatively robust and accurate alignments even under extremely limited data conditions and demonstrated how such models can be developed and applied efficiently in this context. The result is segmentation of sufficient quality for synthesis applications, with the quality of alignments comparable to manual segmentation efforts in this context. Finally, possibilities for further automated refinement of phonetic alignments were investigated and an efficient corpus development strategy was proposed with suggestions for further work in this direction. / Thesis (M.Ing. (Computer Engineering))--North-West University, Potchefstroom Campus, 2009.
208

Automatic speech segmentation with limited data / by D.R. van Niekerk

Van Niekerk, Daniel Rudolph January 2009 (has links)
The rapid development of corpus-based speech systems such as concatenative synthesis systems for under-resourced languages requires an efficient, consistent and accurate solution with regard to phonetic speech segmentation. Manual development of phonetically annotated corpora is a time consuming and expensive process which suffers from challenges regarding consistency and reproducibility, while automation of this process has only been satisfactorily demonstrated on large corpora of a select few languages by employing techniques requiring extensive and specialised resources. In this work we considered the problem of phonetic segmentation in the context of developing small prototypical speech synthesis corpora for new under-resourced languages. This was done through an empirical evaluation of existing segmentation techniques on typical speech corpora in three South African languages. In this process, the performance of these techniques were characterised under different data conditions and the efficient application of these techniques were investigated in order to improve the accuracy of resulting phonetic alignments. We found that the application of baseline speaker-specific Hidden Markov Models results in relatively robust and accurate alignments even under extremely limited data conditions and demonstrated how such models can be developed and applied efficiently in this context. The result is segmentation of sufficient quality for synthesis applications, with the quality of alignments comparable to manual segmentation efforts in this context. Finally, possibilities for further automated refinement of phonetic alignments were investigated and an efficient corpus development strategy was proposed with suggestions for further work in this direction. / Thesis (M.Ing. (Computer Engineering))--North-West University, Potchefstroom Campus, 2009.
209

Bayesian models and algoritms for protein secondary structure and beta-sheet prediction

Aydin, Zafer 17 September 2008 (has links)
In this thesis, we developed Bayesian models and machine learning algorithms for protein secondary structure and beta-sheet prediction problems. In protein secondary structure prediction, we developed hidden semi-Markov models, N-best algorithms and training set reduction procedures for proteins in the single-sequence category. We introduced three residue dependency models (both probabilistic and heuristic) incorporating the statistically significant amino acid correlation patterns at structural segment borders. We allowed dependencies to positions outside the segments to relax the condition of segment independence. Another novelty of the models is the dependency to downstream positions, which is important due to asymmetric correlation patterns observed uniformly in structural segments. Among the dataset reduction methods, we showed that the composition based reduction generated the most accurate results. To incorporate non-local interactions characteristic of beta-sheets, we developed two N-best algorithms and a Bayesian beta-sheet model. In beta-sheet prediction, we developed a Bayesian model to characterize the conformational organization of beta-sheets and efficient algorithms to compute the optimum architecture, which includes beta-strand pairings, interaction types (parallel or anti-parallel) and residue-residue interactions (contact maps). We introduced a Bayesian model for proteins with six or less beta-strands, in which we model the conformational features in a probabilistic framework by combining the amino acid pairing potentials with a priori knowledge of beta-strand organizations. To select the optimum beta-sheet architecture, we analyzed the space of possible conformations by efficient heuristics, in which we significantly reduce the search space by enforcing the amino acid pairs that have strong interaction potentials. For proteins with more than six beta-strands, we first computed beta-strand pairings using the BetaPro method. Then, we computed gapped alignments of the paired beta-strands in parallel and anti-parallel directions and chose the interaction types and beta-residue pairings with maximum alignment scores. Accurate prediction of secondary structure, beta-sheets and non-local contacts should improve the accuracy and quality of the three-dimensional structure prediction.
210

An ensemble speaker and speaking environment modeling approach to robust speech recognition

Tsao, Yu 18 November 2008 (has links)
In this study, an ensemble speaker and speaking environment modeling (ESSEM) approach is proposed to characterize environments in order to enhance performance robustness of automatic speech recognition (ASR) systems under adverse conditions. The ESSEM process comprises two stages, the offline and online phases. In the offline phase, we prepare an ensemble speaker and speaking environment space formed by a collection of super-vectors. Each super-vector consists of the entire set of means from all the Gaussian mixture components of a set of hidden Markov Models that characterizes a particular environment. In the online phase, with the ensemble environment space prepared in the offline phase, we estimate the super-vector for a new testing environment based on a stochastic matching criterion. A series of techniques is proposed to further improve the original ESSEM approach on both offline and online phases. For the offline phase, we focus on methods to enhance the construction and coverage of the environment space. We first demonstrate environment clustering and environment partitioning algorithms to well structure the environment space; then, we propose a discriminative training algorithm to enhance discrimination across environment super-vectors and therefore broaden the coverage of the ensemble environment space. For the online phase, we study methods to increase the efficiency and precision in estimating the target super-vector for the testing condition. To enhance the efficiency, we incorporate dimensionality reduction techniques to reduce the complexity of the original environment space. To improve the precision, we first study different forms of mapping function and propose a weighted N-best information technique; then, we propose cohort selection, environment space adaptation and multiple cluster matching algorithms to facilitate the environment characterization. We evaluate the proposed ESSEM framework on the Aurora-2 connected digit recognition task. Experimental results verify that the original ESSEM approach already provides clear improvement over a baseline system without environment compensation. Moreover, the performance of ESSEM can be further enhanced by using the proposed offline and online algorithms. A significant improvement of 16.08% word error rate reduction is achieved by ESSEM with optimal offline and online configuration over our best baseline system on the Aurora-2 task.

Page generated in 0.0317 seconds