Spelling suggestions: "subject:"markov codels"" "subject:"markov 2models""
221 |
IntelliChair : a non-intrusive sitting posture and sitting activity recognition systemFu, Teng January 2015 (has links)
Current Ambient Intelligence and Intelligent Environment research focuses on the interpretation of a subject’s behaviour at the activity level by logging the Activity of Daily Living (ADL) such as eating, cooking, etc. In general, the sensors employed (e.g. PIR sensors, contact sensors) provide low resolution information. Meanwhile, the expansion of ubiquitous computing allows researchers to gather additional information from different types of sensor which is possible to improve activity analysis. Based on the previous research about sitting posture detection, this research attempts to further analyses human sitting activity. The aim of this research is to use non-intrusive low cost pressure sensor embedded chair system to recognize a subject’s activity by using their detected postures. There are three steps for this research, the first step is to find a hardware solution for low cost sitting posture detection, second step is to find a suitable strategy of sitting posture detection and the last step is to correlate the time-ordered sitting posture sequences with sitting activity. The author initiated a prototype type of sensing system called IntelliChair for sitting posture detection. Two experiments are proceeded in order to determine the hardware architecture of IntelliChair system. The prototype looks at the sensor selection and integration of various sensor and indicates the best for a low cost, non-intrusive system. Subsequently, this research implements signal process theory to explore the frequency feature of sitting posture, for the purpose of determining a suitable sampling rate for IntelliChair system. For second and third step, ten subjects are recruited for the sitting posture data and sitting activity data collection. The former dataset is collected byasking subjects to perform certain pre-defined sitting postures on IntelliChair and it is used for posture recognition experiment. The latter dataset is collected by asking the subjects to perform their normal sitting activity routine on IntelliChair for four hours, and the dataset is used for activity modelling and recognition experiment. For the posture recognition experiment, two Support Vector Machine (SVM) based classifiers are trained (one for spine postures and the other one for leg postures), and their performance evaluated. Hidden Markov Model is utilized for sitting activity modelling and recognition in order to establish the selected sitting activities from sitting posture sequences.2. After experimenting with possible sensors, Force Sensing Resistor (FSR) is selected as the pressure sensing unit for IntelliChair. Eight FSRs are mounted on the seat and back of a chair to gather haptic (i.e., touch-based) posture information. Furthermore, the research explores the possibility of using alternative non-intrusive sensing technology (i.e. vision based Kinect Sensor from Microsoft) and find out the Kinect sensor is not reliable for sitting posture detection due to the joint drifting problem. A suitable sampling rate for IntelliChair is determined according to the experiment result which is 6 Hz. The posture classification performance shows that the SVM based classifier is robust to “familiar” subject data (accuracy is 99.8% with spine postures and 99.9% with leg postures). When dealing with “unfamiliar” subject data, the accuracy is 80.7% for spine posture classification and 42.3% for leg posture classification. The result of activity recognition achieves 41.27% accuracy among four selected activities (i.e. relax, play game, working with PC and watching video). The result of this thesis shows that different individual body characteristics and sitting habits influence both sitting posture and sitting activity recognition. In this case, it suggests that IntelliChair is suitable for individual usage but a training stage is required.
|
222 |
Robust South African sign language gesture recognition using hand motion and shapeFrieslaar, Ibraheem January 2014 (has links)
Magister Scientiae - MSc / Research has shown that five fundamental parameters are required to recognize any sign language gesture: hand shape, hand motion, hand location, hand orientation and facial expressions. The South African Sign Language (SASL) research group at the University of the Western Cape (UWC) has created several systems to recognize sign language gestures using single parameters. These systems are, however, limited to a vocabulary size of 20 – 23 signs, beyond which the recognition accuracy is expected to decrease. The first aim of this research is to investigate the use of two parameters – hand motion and hand shape – to recognise a larger vocabulary of SASL gestures at a high accuracy. Also, the majority of related work in the field of sign language gesture recognition using these two parameters makes use of Hidden Markov Models (HMMs) to classify
gestures. Hidden Markov Support Vector Machines (HM-SVMs) are a relatively new
technique that make use of Support Vector Machines (SVMs) to simulate the functions of HMMs. Research indicates that HM-SVMs may perform better than HMMs in some applications. To our knowledge, they have not been applied to the field of sign language gesture recognition. This research compares the use of these two techniques in the context of SASL gesture recognition. The results indicate that, using two parameters results in a 15% increase in accuracy over the use of a single parameter. Also, it is shown that HM-SVMs are a more accurate technique than HMMs, generally performing better or at least as good as HMMs.
|
223 |
Automatic signature verification systemMalladi, Raghuram January 2013 (has links)
Philosophiae Doctor - PhD / In this thesis, we explore dynamic signature verification systems. Unlike other signature models, we use genuine signatures in this project as they are more appropriate in real world applications. Signature verification systems are typical examples of biometric devices that use physical and behavioral characteristics to verify that a person really is who he or she claims to be. Other popular biometric examples include fingerprint scanners and hand geometry devices. Hand written signatures have been used for some time to endorse financial transactions and legal contracts although little or no verification of signatures is done. This sets it apart from the other biometrics as it is well accepted method of authentication. Until more recently, only hidden Markov models were used for model construction. Ongoing research on signature verification has revealed that more accurate results can be achieved by combining results of multiple models. We also proposed to use combinations of multiple single variate models instead of single multi variate models which are currently being adapted by many systems. Apart from these, the proposed system is an attractive way for making financial transactions more secure and authenticate electronic documents as it can be easily integrated into existing transaction procedures and electronic communications
|
224 |
The optimization of gesture recognition techniques for resource-constrained devicesNiezen, Gerrit 26 January 2009 (has links)
Gesture recognition is becoming increasingly popular as an input mechanism for human-computer interfaces. The availability of MEMS (Micro-Electromechanical System) 3-axis linear accelerometers allows for the design of an inexpensive mobile gesture recognition system. Wearable inertial sensors are a low-cost, low-power solution to recognize gestures and, more generally, track the movements of a person. Gesture recognition algorithms have traditionally only been implemented in cases where ample system resources are available, i.e. on desktop computers with fast processors and large amounts of memory. In the cases where a gesture recognition algorithm has been implemented on a resource-constrained device, only the simplest algorithms were implemented to recognize only a small set of gestures. Current gesture recognition technology can be improved by making algorithms faster, more robust, and more accurate. The most dramatic results in optimization are obtained by completely changing an algorithm to decrease the number of computations. Algorithms can also be optimized by profiling or timing the different sections of the algorithm to identify problem areas. Gestures have two aspects of signal characteristics that make them difficult to recognize: segmentation ambiguity and spatio-temporal variability. Segmentation ambiguity refers to not knowing the gesture boundaries, and therefore reference patterns have to be matched with all possible segments of input signals. Spatio-temporal variability refers to the fact that each repetition of the same gesture varies dynamically in shape and duration, even for the same gesturer. The objective of this study was to evaluate the various gesture recognition algorithms currently in use, after which the most suitable algorithm was optimized in order to implement it on a mobile device. Gesture recognition techniques studied include hidden Markov models, artificial neural networks and dynamic time warping. A dataset for evaluating the gesture recognition algorithms was gathered using a mobile device’s embedded accelerometer. The algorithms were evaluated based on computational efficiency, recognition accuracy and storage efficiency. The optimized algorithm was implemented in a user application on the mobile device to test the empirical validity of the study. / Dissertation (MEng)--University of Pretoria, 2009. / Electrical, Electronic and Computer Engineering / unrestricted
|
225 |
Phoneme duration modelling for speaker verificationVan Heerden, Charl Johannes 26 June 2009 (has links)
Higher-level features are considered to be a potential remedy against transmission line and cross-channel degradations, currently some of the biggest problems associated with speaker verification. Phoneme durations in particular are not altered by these factors; thus a robust duration model will be a particularly useful addition to traditional cepstral based speaker verification systems. In this dissertation we investigate the feasibility of phoneme durations as a feature for speaker verification. Simple speaker specific triphone duration models are created to statistically represent the phoneme durations. Durations are obtained from an automatic hidden Markov model (HMM) based automatic speech recognition system and are modeled using single mixture Gaussian distributions. These models are applied in a speaker verification system (trained and tested on the YOHO corpus) and found to be a useful feature, even when used in isolation. When fused with acoustic features, verification performance increases significantly. A novel speech rate normalization technique is developed in order to remove some of the inherent intra-speaker variability (due to differing speech rates). Speech rate variability has a negative impact on both speaker verification and automatic speech recognition. Although the duration modelling seems to benefit only slightly from this procedure, the fused system performance improvement is substantial. Other factors known to influence the duration of phonemes are incorporated into the duration model. Utterance final lengthening is known be a consistent effect and thus “position in sentence” is modeled. “Position in word” is also modeled since triphones do not provide enough contextual information. This is found to improve performance since some vowels’ duration are particularly sensitive to its position in the word. Data scarcity becomes a problem when building speaker specific duration models. By using information from available data, unknown durations can be predicted in an attempt to overcome the data scarcity problem. To this end we develop a novel approach to predict unknown phoneme durations from the values of known phoneme durations for a particular speaker, based on the maximum likelihood criterion. This model is based on the observation that phonemes from the same broad phonetic class tend to co-vary strongly, but that there is also significant cross-class correlations. This approach is tested on the TIMIT corpus and found to be more accurate than using back-off techniques. / Dissertation (MEng)--University of Pretoria, 2009. / Electrical, Electronic and Computer Engineering / unrestricted
|
226 |
Prediction and Analysis of Nucleosome Positions in DNA / Prediction and Analysis of Nucleosome Positions in DNAVišňovský, Marek January 2013 (has links)
Eukaryotní DNA se váže kolem nukleozomů, čím ovplyvnuje vyšši strukturu DNA a přístup k vazebním mistům pro všeobecní transkripční faktory a oblasti genů. Je proto důležité vědet, kde se nukleozomy vážou na DNA, a jak silná tato vazba je, abychom mohli porozumět mechanizmům regulace genů. V rámci projektu byla implementována nová metoda pro predikci nukleozomů založená na rozšíření Skrytých Markovových modelů, kde jako trénovací a testovací sada posloužila publikována data z Brogaard et al. (Brogaard K, Wang J-P, Widom, J. Nature 486(7404), 496-501 (2012). doi:10.1038/nature11142). Správne predikováno bylo zhruba 50% nukleozomů, co je porovnatenlný výsledek s existujícimi metodami. Okrem toho byla provedena řada experimentů popisující vlastnosti sekvencí nukleozomů a ich organizace.
|
227 |
Zvyšování účinnosti strojového rozpoznávání řeči / Enhancing the effectiveness of automatic speech recognitionZelinka, Petr January 2012 (has links)
This work identifies the causes for unsatisfactory reliability of contemporary systems for automatic speech recognition when deployed in demanding conditions. The impact of the individual sources of performance degradation is documented and a list of known methods for their identification from the recognized signal is given. An overview of the usual methods to suppress the impact of the disruptive influences on the performance of speech recognition is provided. The essential contribution of the work is the formulation of new approaches to constructing acoustical models of noisy speech and nonstationary noise allowing high recognition performance in challenging conditions. The viability of the proposed methods is verified on an isolated-word speech recognizer utilizing several-hour-long recording of the real operating room background acoustical noise recorded at the Uniklinikum Marburg in Germany. This work is the first to identify the impact of changes in speaker’s vocal effort on the reliability of automatic speech recognition in the full vocal effort range (i.e. whispering through shouting). A new concept of a speech recognizer immune to the changes in vocal effort is proposed. For the purposes of research on changes in vocal effort, a new speech database, BUT-VE1, was created.
|
228 |
Detekce genů v DNA sekvencích / Gene Detection in DNA SequencesRoubalík, Zbyněk January 2011 (has links)
Gene detection in DNA sequences is one of the most difficult problems, which have been currently solved in bioinformatics. This thesis deals with gene detection in DNA sequences with methods using Hidden Markov Models. It contains a brief description of the fundamental principles of molecular biology, explains how genetic information is stored in DNA sequences, as well as the theoretical basis of the Hidden Markov Models. Further is described subsequent approach in the design of specific Hidden Markov Models for solving the problem of gene detection in DNA sequences. Is designed and implemented application, which uses previously designed Hidden Markov model for gene detection. This application is tested on the real data, results of these tests are discussed in the end of the thesis, as well as the possible extension and continuation of the project.
|
229 |
Preliminary study for detection and classification of swallowing sound / Étude préliminaire de détection et classification des sons de la déglutitionKhlaifi, Hajer 21 May 2019 (has links)
Les maladies altérant le processus de la déglutition sont multiples, affectant la qualité de vie du patient et sa capacité de fonctionner en société. La nature exacte et la gravité des changements post/pré-traitement dépendent de la localisation de l’anomalie. Une réadaptation efficace de la déglutition, cliniquement parlant, dépend généralement de l’inclusion d’une évaluation vidéo-fluoroscopique de la déglutition du patient dans l’évaluation post-traitement des patients en risque de fausse route. La restriction de cette utilisation est due au fait qu’elle est très invasive, comme d’autres moyens disponibles, tels que la fibre optique endoscopique. Ces méthodes permettent d’observer le déroulement de la déglutition et d’identifier les lieux de dysfonctionnement, durant ce processus, avec une précision élevée. "Mieux vaut prévenir que guérir" est le principe de base de la médecine en général. C’est dans ce contexte que se situe ce travail de thèse pour la télésurveillance des malades et plus spécifiquement pour suivre l’évolution fonctionnelle du processus de la déglutition chez des personnes à risques dysphagiques, que ce soit à domicile ou bien en institution, en utilisant le minimum de capteurs non-invasifs. C’est pourquoi le principal signal traité dans ce travail est le son. La principale problématique du traitement du signal sonore est la détection automatique du signal utile du son, étape cruciale pour la classification automatique de sons durant la prise alimentaire, en vue de la surveillance automatique. L’étape de la détection du signal utile permet de réduire la complexité du système d’analyse sonore. Les algorithmes issus de l’état de l’art traitant la détection du son de la déglutition dans le bruit environnemental n’ont pas montré une bonne performance. D’où l’idée d’utiliser un seuil adaptatif sur le signal, résultant de la décomposition en ondelettes. Les problématiques liées à la classification des sons en général et des sons de la déglutition en particulier sont abordées dans ce travail avec une analyse hiérarchique, qui vise à identifier dans un premier temps les segments de sons de la déglutition, puis à le décomposer en trois sons caractéristiques, ce qui correspond parfaitement à la physiologie du processus. Le couplage est également abordé dans ce travail. L’implémentation en temps réel de l’algorithme de détection a été réalisée. Cependant, celle de l’algorithme de classification reste en perspective. Son utilisation en clinique est prévue. / The diseases affecting and altering the swallowing process are multi-faceted, affecting the patient’s quality of life and ability to perform well in society. The exact nature and severity of the pre/post-treatment changes depend on the location of the anomaly. Effective swallowing rehabilitation, clinically depends on the inclusion of a video-fluoroscopic evaluation of the patient’s swallowing in the post-treatment evaluation. There are other available means such as endoscopic optical fibre. The drawback of these evaluation approaches is that they are very invasive. However, these methods make it possible to observe the swallowing process and identify areas of dysfunction during the process with high accuracy. "Prevention is better than cure" is the fundamental principle of medicine in general. In this context, this thesis focuses on remote monitoring of patients and more specifically monitoring the functional evolution of the swallowing process of people at risk of dysphagia, whether at home or in medical institutions, using the minimum number of non-invasive sensors. This has motivated the monitoring of the swallowing process based on the capturing only the acoustic signature of the process and modeling the process as a sequence of acoustic events occuring within a specific time frame. The main problem of such acoustic signal processing is the automatic detection of the relevent sound signals, a crucial step in the automatic classification of sounds during food intake for automatic monitoring. The detection of relevant signal reduces the complexity of the subsequent analysis and characterisation of a particular swallowing process. The-state-of-the-art algorithms processing the detection of the swallowing sounds as distinguished from environmental noise were not sufficiently accurate. Hence, the idea occured of using an adaptive threshold on the signal resulting from wavelet decomposition. The issues related to the classification of sounds in general and swallowing sounds in particular are addressed in this work with a hierarchical analysis that aims to first identify the swallowing sound segments and then to decompose them into three characteristic sounds, consistent with the physiology of the process. The coupling between detection and classification is also addressed in this work. The real-time implementation of the detection algorithm has been carried out. However, clinical use of the classification is discussed with a plan for its staged deployment subject to normal processes of clinical approval.
|
230 |
Décomposition en temps réel de signaux iEMG : filtrage bayésien implémenté sur GPU / On-line decomposition of iEMG signals using GPU-implemented Bayesian filteringYu, Tianyi 28 January 2019 (has links)
Un algorithme de décomposition des unités motrices constituant un signal électromyographiques intramusculaires (iEMG) a été proposé au laboratoire LS2N. Il s'agit d'un filtrage bayésien estimant l'état d'un modèle de Markov caché. Cet algorithme demande beaucoup de temps d'execution, même pour un signal ne contenant que 4 unités motrices. Dans notre travail, nous avons d'abord validé cet algorithme dans une structure série. Nous avons proposé quelques modifications pour le modèle de recrutement des unités motrices et implémenté deux techniques de pré-traitement pour améliorer la performance de l'algorithme. Le banc de filtres de Kalman a été remplacé par un banc de filtre LMS. Le filtre global consiste en l'examen de divers scénarios arborescents d'activation des unités motrices: on a introduit deux techniques heuristiques pour élaguer les divers scénarios. On a réalisé l'implémentation GPU de cet algorithme à structure parallèle intrinsèque. On a réussi la décomposition de 10 signaux expérimentaux enregistrés sur deux muscules, respectivement avec électrode aiguille et électrode filaire. Le nombre d'unités motrices est de 2 à 8. Le pourcentage de superposition des potentiels d'unité motrice, qui représente la complexité de signal, varie de 6.56 % à 28.84 %. La précision de décomposition de tous les signaux sont plus que 90 %, sauf deux signaux en 30 % MVC , sauf pour deux signaux qui sont à 30 % MVC et dont la précision de décomposition est supérieure à 85%. Nous sommes les premiers à réaliser la décomposition en temps réel pour un signal constitué de 10 unités motrices. / :A sequential decomposition algorithm based on a Hidden Markov Model of the EMG, that used Bayesian filtering to estimate the unknown parameters of discharge series of motor units was previously proposed in the laboratory LS2N. This algorithm has successfully decomposed the experimental iEMG signal with four motor units. However, the proposed algorithm demands a high time consuming. In this work, we firstly validated the proposed algorithm in a serial structure. We proposed some modifications for the activation process of the recruitment model in Hidden Markov Model and implemented two signal pre-processing techniques to improve the performance of the algorithm. Then, we realized a GPU-oriented implementation of this algorithm, as well as the modifications applied to the original model in order to achieve a real-time performance. We have achieved the decomposition of 10 experimental iEMG signals acquired from two different muscles, respectively by fine wire electrodes and needle electrodes. The number of motor units ranges from 2 to 8. The percentage of superposition, representing the complexity of iEMG signal, ranges from 6.56 % to 28.84 %. The accuracies of almost all experimental iEMG signals are more than90 %, except two signals at 30 % MVC (more than 85 %). Moreover, we realized the realtime decomposition for all these experimental signals by the parallel implementation. We are the first one that realizes the real time full decomposition of single channel iEMG signal with number of MUs up to 10, where full decomposition means resolving the superposition problem. For the signals with more than 10 MUs, we can also decompose them quickly, but not reaching the real time level.
|
Page generated in 0.0454 seconds