• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Causal assumptions : some responses to Nancy Cartwright

Kristtorn, Sonje 31 July 2007
The theories of causality put forward by Pearl and the Spirtes-Glymour-Scheines group have entered the mainstream of statistical thinking. These theories show that under ideal conditions, causal relationships can be inferred from purely statistical observational data. Nancy Cartwright advances certain arguments against these causal inference algorithms: the well-known factory example argument against the Causal Markov condition and an argument against faithfulness. We point to the dependence of the first argument on undefined categories external to the technical apparatus of causal inference algorithms. We acknowledge the possible practical implication of her second argument, yet we maintain, with respect to both arguments, that this variety of causal inference, if not universal, is nonetheless eminently useful. Cartwright argues against assumptions that are essential not only to causal inference algorithms but to causal inference generally, even if, as she contends, they are not without exception and that the same is true of other, likewise essential, assumptions. We indicate that causal inference is an iterative process and that causal inference algorithms assist, rather than replace, that process as performed by human beings.
2

Causal assumptions : some responses to Nancy Cartwright

Kristtorn, Sonje 31 July 2007 (has links)
The theories of causality put forward by Pearl and the Spirtes-Glymour-Scheines group have entered the mainstream of statistical thinking. These theories show that under ideal conditions, causal relationships can be inferred from purely statistical observational data. Nancy Cartwright advances certain arguments against these causal inference algorithms: the well-known factory example argument against the Causal Markov condition and an argument against faithfulness. We point to the dependence of the first argument on undefined categories external to the technical apparatus of causal inference algorithms. We acknowledge the possible practical implication of her second argument, yet we maintain, with respect to both arguments, that this variety of causal inference, if not universal, is nonetheless eminently useful. Cartwright argues against assumptions that are essential not only to causal inference algorithms but to causal inference generally, even if, as she contends, they are not without exception and that the same is true of other, likewise essential, assumptions. We indicate that causal inference is an iterative process and that causal inference algorithms assist, rather than replace, that process as performed by human beings.
3

Kausales Denken, Bayes-Netze und die Markov-Bedingung / Causal reasoning, Bayes nets, and the Markov condition

Mayrhofer, Ralf 11 February 2009 (has links)
No description available.

Page generated in 0.0565 seconds