• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Convex duality in constrained mean-variance portfolio optimization under a regime-switching model

Donnelly, Catherine January 2008 (has links)
In this thesis, we solve a mean-variance portfolio optimization problem with portfolio constraints under a regime-switching model. Specifically, we seek a portfolio process which minimizes the variance of the terminal wealth, subject to a terminal wealth constraint and convex portfolio constraints. The regime-switching is modeled using a finite state space, continuous-time Markov chain and the market parameters are allowed to be random processes. The solution to this problem is of interest to investors in financial markets, such as pension funds, insurance companies and individuals. We establish the existence and characterization of the solution to the given problem using a convex duality method. We encode the constraints on the given problem as static penalty functions in order to derive the primal problem. Next, we synthesize the dual problem from the primal problem using convex conjugate functions. We show that the solution to the dual problem exists. From the construction of the dual problem, we find a set of necessary and sufficient conditions for the primal and dual problems to each have a solution. Using these conditions, we can show the existence of the solution to the given problem and characterize it in terms of the market parameters and the solution to the dual problem. The results of the thesis lay the foundation to find an actual solution to the given problem, by looking at specific examples. If we can find the solution to the dual problem for a specific example, then, using the characterization of the solution to the given problem, we may be able to find the actual solution to the specific example. In order to use the convex duality method, we have to prove a martingale representation theorem for processes which are locally square-integrable martingales with respect to the filtration generated by a Brownian motion and a finite state space, continuous-time Markov chain. This result may be of interest in problems involving regime-switching models which require a martingale representation theorem.
2

Convex duality in constrained mean-variance portfolio optimization under a regime-switching model

Donnelly, Catherine January 2008 (has links)
In this thesis, we solve a mean-variance portfolio optimization problem with portfolio constraints under a regime-switching model. Specifically, we seek a portfolio process which minimizes the variance of the terminal wealth, subject to a terminal wealth constraint and convex portfolio constraints. The regime-switching is modeled using a finite state space, continuous-time Markov chain and the market parameters are allowed to be random processes. The solution to this problem is of interest to investors in financial markets, such as pension funds, insurance companies and individuals. We establish the existence and characterization of the solution to the given problem using a convex duality method. We encode the constraints on the given problem as static penalty functions in order to derive the primal problem. Next, we synthesize the dual problem from the primal problem using convex conjugate functions. We show that the solution to the dual problem exists. From the construction of the dual problem, we find a set of necessary and sufficient conditions for the primal and dual problems to each have a solution. Using these conditions, we can show the existence of the solution to the given problem and characterize it in terms of the market parameters and the solution to the dual problem. The results of the thesis lay the foundation to find an actual solution to the given problem, by looking at specific examples. If we can find the solution to the dual problem for a specific example, then, using the characterization of the solution to the given problem, we may be able to find the actual solution to the specific example. In order to use the convex duality method, we have to prove a martingale representation theorem for processes which are locally square-integrable martingales with respect to the filtration generated by a Brownian motion and a finite state space, continuous-time Markov chain. This result may be of interest in problems involving regime-switching models which require a martingale representation theorem.
3

Dynamic Complex Hedging And Portfolio Optimization In Additive Markets

Polat, Onur 01 February 2009 (has links) (PDF)
In this study, the geometric Additive market models are considered. In general, these market models are incomplete, that means: the perfect replication of derivatives, in the usual sense, is not possible. In this study, it is shown that the market can be completed by new artificial assets which are called &ldquo / power-jump assets&rdquo / based on the power-jump processes of the underlying Additive process. Then, the hedging portfolio for claims whose payoff function depends on the prices of the stock and the power-jump assets at maturity is derived. In addition to the previous completion strategy, it is also shown that, using a static hedging formula, the market can also be completed by considering portfolios with a continuum of call options with different strikes and the same maturity. What is more, the portfolio optimization problem is considered in the enlarged market. The optimization problem consists of choosing an optimal portfolio in such a way that the largest expected utility of the terminal wealth is obtained. For particular choices of the equivalent martingale measure, it is shown that the optimal portfolio consists only of bonds and stocks.
4

Completion Of A Levy Market Model And Portfolio Optimization

Turkvatan, Aysun 01 September 2008 (has links) (PDF)
In this study, general geometric Levy market models are considered. Since these models are, in general, incomplete, that is, all contingent claims cannot be replicated by a self-financing portfolio consisting of investments in a risk-free bond and in the stock, it is suggested that the market should be enlarged by artificial assets based on the power-jump processes of the underlying Levy process. Then it is shown that the enlarged market is complete and the explicit hedging portfolios for claims whose payoff function depends on the prices of the stock and the artificial assets at maturity are derived. Furthermore, the portfolio optimization problem is considered in the enlarged market. The problem consists of choosing an optimal portfolio in such a way that the largest expected utility of the terminal wealth is obtained. It is shown that for particular choices of the equivalent martingale measure in the market, the optimal portfolio only consists of bonds and stocks. This corresponds to completing the market with additional assets in such a way that they are superfluous in the sense that the terminal expected utility is not improved by including these assets in the portfolio.
5

Calcul fonctionnel non-anticipatif et applications aux processus stochastiques / Non-anticipative functional calculus and applications to stochastic processes

Lu, Yi 06 December 2017 (has links)
Cette thèse est consacrée à l’étude du calcul fonctionnel non-anticipatif, qui est basé sur la notion de dérivée verticale d'une fonctionelle. Nous étendons le cadre classique de ce calcul à des fonctionnelles ne possédant pas de dérivée directionnelle classique. Dans la première partie, nous montrons comment une classe importante de fonctionelles, définie par une espérance conditionnelle, peuvent être approchées de façon systématique par des fonctionnelles régulières. Dans la deuxième partie, nous introduisons une notion de dérivée verticale faible qui couvre une plus grande classe de fonctionnelles, et notamment toutes les martingales locales. Dans la première partie, nous nous sommes intéressés à la représentation d'une espérance conditionnelle par une fonctionnelle non-anticipative. L'idée est d'approximer ces fonctionnelles par une suite des fonctionnelles régulières dans un certain sens. Cette approche fournit une façon systématique d'obtenir une approximation explicite de la représentation des martingales pour une grande famille de fonctionnelles Browniennes. Nous obtenons également un ordre de convergence explicite. Quelques applications au problème de la couverture dynamique sont données à la fin de cette partie.Dans la deuxième partie, nous étendons la notion de dérivée verticale pour des fonctionnelles qui n'admettent pas nécessairement de dérivée directionnelle. Cette notion nous permet également d'obtenir une caractérisation fonctionnelle d'une martingale locale par rapport à un processus de référence fixé, ce qui donne lieu à une notion de solution faible pour des équations aux dérivées partielles dépendant de la trajectoire. / This thesis focuses on various mathematical questions arising in the non-anticipative functional calculus, which is based on a notion of pathwise directional derivatives for functionals. We extend the scope and results of this calculus to functionals which may not admit such derivatives, either through approximations (Part I) or by defining a notion of weak vertical derivative (Part II). In the first part, we consider the representation of conditional expectations as non-anticipative functionals. We show that it is possible under very general conditions to approximate such functionals by a sequence of smooth functionals in an appropriate sense. This approach provides a systematic method for computing explicit approximations to martingale representations for a large class of Brownian functionals. We also derive explicit convergence rates of the approximations. These results are then applied to the problem of sensitivity analysis and dynamic hedging of (path-dependent) contingent claims. In the second part, we propose a concept of weak vertical derivative for non-anticipative functionals which may fail to possess directional derivatives. The definition of the weak vertical derivative is based on the notion of pathwise quadratic variation and makes use of the duality associated to the associated bilinear form. We show that the notion of weak vertical derivative leads to a functional characterization of local martingales with respect to a reference process, and allows to define a concept of pathwise weak solution for path-dependent partial differential equations.
6

Pathwise functional lto calculus and its applications to the mathematical finance

Nkosi, Siboniso Confrence January 2019 (has links)
Thesis (M.Sc. (Applied Mathematics)) -- University of Limpopo, 2019 / Functional Itˆo calculus is based on an extension of the classical Itˆo calculus to functionals depending on the entire past evolution of the underlying paths and not only on its current value. The calculus builds on F¨ollmer’s deterministic proof of the Itˆo formula Föllmer (1981) and a notion of pathwise functional derivative recently proposed by Dupire (2019). There are no smoothness assumptions required on the functionals, however, they are required to possess certain directional derivatives which may be computed pathwise, see Cont and Fournié (2013); Schied and Voloshchenko (2016a); Cont (2012). In this project we revise the functional Itô calculus together with the notion of quadratic variation. We compute the pathwise change of variable formula utilizing the functional Itô calculus and the quadratic variation notion. We study the martingale representation for the case of weak derivatives, we allow the vertical operator, rX, to operate on continuous functionals on the space of square-integrable Ft-martingales with zero initial value. We approximate the hedging strategy, H, for the case of path-dependent functionals, with Lipschitz continuous coefficients. We study some hedging strategies on the class of discounted market models satisfying the quadratic variation and the non-degeneracy properties. In the classical case of the Black-Scholes, Greeks are an important part of risk-management so we compute Greeks of the price given by path-dependent functionals. Lastly we show that they relate to the classical case in the form of examples. / NRF and AIMS-SA
7

Completion, Pricing And Calibration In A Levy Market Model

Yilmaz, Busra Zeynep 01 September 2010 (has links) (PDF)
In this thesis, modelling with L&eacute / vy processes is considered in three parts. In the first part, the general geometric L&eacute / vy market model is examined in detail. As such markets are generally incomplete, it is shown that the market can be completed by enlarging with a series of new artificial assets called &ldquo / power-jump assets&rdquo / based on the power-jump processes of the underlying L&eacute / vy process. The second part of the thesis presents two different methods for pricing European options: the martingale pricing approach and the Fourier-based characteristic formula method which is performed via fast Fourier transform (FFT). Performance comparison of the pricing methods led to the fact that the fast Fourier transform produces very small pricing errors so the results of both methods are nearly identical. Throughout the pricing section jump sizes are assumed to have a particular distribution. The third part contributes to the empirical applications of L&eacute / vy processes. In this part, the stochastic volatility extension of the jump diffusion model is considered and calibration on Standard&amp / Poors (S&amp / P) 500 options data is executed for the jump-diffusion model, stochastic volatility jump-diffusion model of Bates and the Black-Scholes model. The model parameters are estimated by using an optimization algorithm. Next, the effect of additional stochastic volatility extension on explaining the implied volatility smile phenomenon is investigated and it is found that both jumps and stochastic volatility are required. Moreover, the data fitting performances of three models are compared and it is shown that stochastic volatility jump-diffusion model gives relatively better results.

Page generated in 0.1831 seconds