• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • Tagged with
  • 16
  • 16
  • 16
  • 16
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Contributions to Pointfree Topology and Apartness Spaces

Hedin, Anton January 2011 (has links)
The work in this thesis contains some contributions to constructive point-free topology and the theory of apartness spaces. The first two papers deal with constructive domain theory using formal topology. In Paper I we focus on the notion of a domain representation of a formal space as a way to introduce generalized points of the represented space, whereas we in Paper II give a constructive and point-free treatment of the domain theoretic approach to differential calculus. The last two papers are of a slightly different nature but still concern constructive topology. In paper III we consider a measure theoretic covering theorem from various constructive angles in both point-set and point-free topology. We prove a point-free version of the theorem. In Paper IV we deal with issues of impredicativity in the theory of apartness spaces. We introduce a notion of set-presented apartness relation which enables a predicative treatment of basic constructions of point-set apartness spaces.
12

A Natural Interpretation of Classical Proofs

Brage, Jens January 2006 (has links)
<p>In this thesis we use the syntactic-semantic method of constructive type theory to give meaning to classical logic, in particular Gentzen's LK.</p><p>We interpret a derivation of a classical sequent as a derivation of a contradiction from the assumptions that the antecedent formulas are true and that the succedent formulas are false, where the concepts of truth and falsity are taken to conform to the corresponding constructive concepts, using function types to encode falsity. This representation brings LK to a manageable form that allows us to split the succedent rules into parts. In this way, every succedent rule gives rise to a natural deduction style introduction rule. These introduction rules, taken together with the antecedent rules adapted to natural deduction, yield a natural deduction calculus whose subsequent interpretation in constructive type theory gives meaning to classical logic.</p><p>The Gentzen-Prawitz inversion principle holds for the introduction and elimination rules of the natural deduction calculus and allows for a corresponding notion of convertibility. We take the introduction rules to determine the meanings of the logical constants of classical logic and use the induced type-theoretic elimination rules to interpret the elimination rules of the natural deduction calculus. This produces an interpretation injective with respect to convertibility, contrary to an analogous translation into intuitionistic predicate logic.</p><p>From the interpretation in constructive type theory and the interpretation of cut by explicit substitution, we derive a full precision contraction relation for a natural deduction version of LK. We use a term notation to formalize the contraction relation and the corresponding cut-elimination procedure.</p><p>The interpretation can be read as a Brouwer-Heyting-Kolmogorov (BHK) semantics that justifies classical logic. The BHK semantics utilizes a notion of classical proof and a corresponding notion of classical truth akin to Kolmogorov's notion of pseudotruth. We also consider a second BHK semantics, more closely connected with Kolmogorov's double-negation translation.</p><p>The first interpretation reinterprets the consequence relation while keeping the constructive interpretation of truth, whereas the second interpretation reinterprets the notion of truth while keeping the constructive interpretation of the consequence relation. The first and second interpretations act on derivations in much the same way as Plotkin's call-by-value and call-by-name continuation-passing-style translations, respectively.</p><p>We conclude that classical logic can be given a constructive semantics by laying down introduction rules for the classical logical constants. This semantics constitutes a proof interpretation of classical logic.</p>
13

Egendom och Stöld : Den juridiska hegemonins svårigheter med teknikens nya matematik / Theft and Property : The Juridical Hegemony and its Problems with Incorporating the Technologies New Mathematics

Fiallo Kaminski, Ricardo January 2009 (has links)
<p>Genom att analysera domstolsmaterialet från rättegången mot fildelningssiten The Pirat Bay, i relation till en idéhistorisk diskussion om äganderätt, har uppsatsen funnit att den liberala tanketraditionen och dess juridiska institutioner står inför en betydelseglidning vad gället begreppsparet ”Egendom” och ”Stöld”. Det har visat sig att Lockes naturtillstånd, varseblivningen av ”det oändliga” på jorden, har skiftat plats; från ”naturen” ut till ”cyberspace”, vilket har resulterat i att fildelningstekniken skapat en ny matematik som omöjliggör tidigare egendomsdefinition.</p>
14

A Natural Interpretation of Classical Proofs

Brage, Jens January 2006 (has links)
In this thesis we use the syntactic-semantic method of constructive type theory to give meaning to classical logic, in particular Gentzen's LK. We interpret a derivation of a classical sequent as a derivation of a contradiction from the assumptions that the antecedent formulas are true and that the succedent formulas are false, where the concepts of truth and falsity are taken to conform to the corresponding constructive concepts, using function types to encode falsity. This representation brings LK to a manageable form that allows us to split the succedent rules into parts. In this way, every succedent rule gives rise to a natural deduction style introduction rule. These introduction rules, taken together with the antecedent rules adapted to natural deduction, yield a natural deduction calculus whose subsequent interpretation in constructive type theory gives meaning to classical logic. The Gentzen-Prawitz inversion principle holds for the introduction and elimination rules of the natural deduction calculus and allows for a corresponding notion of convertibility. We take the introduction rules to determine the meanings of the logical constants of classical logic and use the induced type-theoretic elimination rules to interpret the elimination rules of the natural deduction calculus. This produces an interpretation injective with respect to convertibility, contrary to an analogous translation into intuitionistic predicate logic. From the interpretation in constructive type theory and the interpretation of cut by explicit substitution, we derive a full precision contraction relation for a natural deduction version of LK. We use a term notation to formalize the contraction relation and the corresponding cut-elimination procedure. The interpretation can be read as a Brouwer-Heyting-Kolmogorov (BHK) semantics that justifies classical logic. The BHK semantics utilizes a notion of classical proof and a corresponding notion of classical truth akin to Kolmogorov's notion of pseudotruth. We also consider a second BHK semantics, more closely connected with Kolmogorov's double-negation translation. The first interpretation reinterprets the consequence relation while keeping the constructive interpretation of truth, whereas the second interpretation reinterprets the notion of truth while keeping the constructive interpretation of the consequence relation. The first and second interpretations act on derivations in much the same way as Plotkin's call-by-value and call-by-name continuation-passing-style translations, respectively. We conclude that classical logic can be given a constructive semantics by laying down introduction rules for the classical logical constants. This semantics constitutes a proof interpretation of classical logic.
15

Egendom och Stöld : Den juridiska hegemonins svårigheter med teknikens nya matematik / Theft and Property : The Juridical Hegemony and its Problems with Incorporating the Technologies New Mathematics

Fiallo Kaminski, Ricardo January 2009 (has links)
Genom att analysera domstolsmaterialet från rättegången mot fildelningssiten The Pirat Bay, i relation till en idéhistorisk diskussion om äganderätt, har uppsatsen funnit att den liberala tanketraditionen och dess juridiska institutioner står inför en betydelseglidning vad gället begreppsparet ”Egendom” och ”Stöld”. Det har visat sig att Lockes naturtillstånd, varseblivningen av ”det oändliga” på jorden, har skiftat plats; från ”naturen” ut till ”cyberspace”, vilket har resulterat i att fildelningstekniken skapat en ny matematik som omöjliggör tidigare egendomsdefinition.
16

Abstract Logics and Lindström's Theorem / Abstrakta Logiker och Lindströms Sats

Bengtsson, Niclas January 2023 (has links)
A definition of abstract logic is presented. This is used to explore and compare some abstract logics, such as logics with generalised quantifiers and infinitary logics, and their properties. Special focus is given to the properties of completeness, compactness, and the Löwenheim-Skolem property. A method of comparing different logics is presented and the concept of equivalent logics introduced. Lastly a proof is given for Lindström's theorem, which provides a characterization of elementary logic, also known as first-order logic, as the strongest logic for which both the compactness property and the Löwenheim-Skolem property, holds.

Page generated in 0.059 seconds