• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cristalização e sinterização de bio vidros do sistema Na2O-CaO-SiO2-P2O5 / Crystallization and sintering of bio-glasses of Na2O-CaO-SiO2-P2O5

Leite, Magda Lauri Gomes 30 March 2001 (has links)
Made available in DSpace on 2016-06-02T19:10:04Z (GMT). No. of bitstreams: 1 3254.pdf: 9114679 bytes, checksum: 24f1f1d8aaee16c0ae43078401935a2d (MD5) Previous issue date: 2001-03-30 / Universidade Federal de Sao Carlos / The objective of this work was to study crystallisation and sintering of Bio-glasses of Na2O CaO SiO2 P2O5 aiming at the improvement of the mechanical properties. In order to study the development of glass-ceramics in this system, the effects of the addition of different percentages of NaF, Fe2O3, Li2O, ZrO2, TiO2 and WO3 on the behaviour of crystallisation of the glasses were studied using DSC. The results show that amongst the additions that were tested only Li2O caused increased volumetric nucleation rate. Different melting techniques were tested to obtain glasses with different concentrations of OH-. Although glasses with different contents were obtained successfully, there were problems to homogenise them. The direct extrusion technique was used to produce glass-ceramics with texture. Albeit the technique was efficient with several other systems, the results obtained in the present word showed that the glass-ceramic produced from the extruded glasses did not have the same symmetry that was showed by the glasses that were not extruded. The difficulties in sintering, related to the process of crystallisation, were analysed for two compositions of bio-glasses. Two new crystalline phases, which had not yet been observed in this system, were identified in the studies of sintering. Experimental data showed that superficial crystallisation has strong influence during the process of sintering for both glasses tested. It was not possible to obtain sintered bodies with relative density superior to 0.94 for the experimental conditions that were used. The use of the model that simulates the sintering of the glass proved to be useful to simulate the real effect of each parameter in the process, although it overestimated the ability of sintering of the compositions that were used. The use of this model can facilitate the process of searching solutions for a more efficient sintering process. Using the technique of FTIR, the studies of bioactivity of both glass and glass-ceramic powders revelled higher level of bioactivity for finer powders, and which contained phosphorus in their compositions. It was also verified that whilst total crystallisation hinders the formation of the layer of HCA, partial crystallisation seems to have beneficial effect in the process. / O objetivo deste trabalho foi estudar a nucleação, a cristalização e a sinterização de bio vidros do sistema Na2O CaO SiO2 P2O5 visando a melhoria de suas propriedades mecânicas, sem alterar significativamente a bioatividade. Para auxiliar no desenvolvimento de vitro-cerâmicas (VC) de fina microestrutura (e possivelmente boas propriedades mecânicas) estudamos os efeitos da adição de NaF, Fe2O3, Li2O, ZrO2,TiO2 e WO3, em diferentes porcentagens, no comportamento de cristalização dos vidros, através da técnica de DSC. Dentre os aditivos testados, somente o Li2O provocou aumento da taxa de nucleação volumétrica. Sabendo que OH- aumenta a taxa de nucleação, foram testadas diferentes técnicas de fusão para se obter vidros com diferentes concentrações desse dopante. Apesar do sucesso na obtenção de vidros com diferentes teores, a exemplo do que reporta a literatura, a homogeneização dos mesmos não foi satisfatória. Dessa forma, desenvolvemos e testamos um modelo original para avaliar a homogeneidade de vidros através de medidas de cristalização. A técnica de extrusão direta foi utilizada com a finalidade de produzir vitro-cerâmicas com textura (microestruturas alinhadas). Apesar da técnica ter sido eficiente em vários outros sistemas, os resultados encontrados neste trabalho demonstraram que a vitro-cerâmica obtida a partir do vidro extrudado apresentava a mesma isotropia das vitro-cerâmicas obtidas a partir do vidro não extrudado. Esse resultado é devido à morfologia quase esférica dos cristais que nucleiam neste sistema. Também tentamos sinterizar alguns desses vidros em pó, com o intuito de aproveitar a fina nucleação que geralmente ocorre nas superfícies das partículas, que após sinterizadas, poderiam levar VC com fina microestrutura. A competição entre a cinéticas de sinterização e cristalização foram analisadas experimental e teoricamente para duas composições de biovidros. Nesses estudos foram identificadas duas novas fases cristalinas, que até o momento não tinham sido observadas neste sistema Os dados experimentais mostraram que a cristalização superficial tem forte influência sobre o processo de sinterização para os dois vidros testados, sendo que para as condições experimentais utilizadas não foi possível obter corpos sinterizados com densidade relativa superior a 0,94. A utilização do modelo que simula a sinterização do vidro, apesar de superestimar a capacidade de sinterização das composições utilizadas, mostrou-se bastante útil para prever o real efeito de cada parâmetro no processo de sinterização, e com isto agilizar a busca de soluções para atingir uma densificação mais eficiente. Estudos de bioatividade utilizando a técnica de FTIR, em pós de vidro e vitro-cerâmicas, revelaram maior bioatividade para os pós mais finos e para as composições contendo fósforo em sua composição. Também foi verificado que a cristalização total do vidro retarda o processo de formação da camada de HCA, entretanto a cristalização parcial parece ter efeitos benéficos no processo de formação da camada.
2

Processamento sol-gel de pós bioativos vítreos e cristalinos / Sol-gel processing of vitreous and crystalline bioactive powders

Siqueira, Renato Luiz 19 March 2010 (has links)
Made available in DSpace on 2016-06-02T19:12:07Z (GMT). No. of bitstreams: 1 3227.pdf: 10283587 bytes, checksum: 265dbc735fb8b40846218a1daa254d8e (MD5) Previous issue date: 2010-03-19 / Financiadora de Estudos e Projetos / In recent years, the sol-gel process has been increasingly used in the preparation of glasses and glass-ceramics with biomedical applications. Although the precursors used in this synthesis methodology are a very important parameter, few studies have investigated their influence on the synthesis of these materials. In the present work, vitreous and crystalline bioactive powders of the systems SiO2−CaO−P2O5 and SiO2−CaO−Na2O−P2O5 were synthesized by means of a sol-gel route using different phosphorus precursors. The compounds chosen were triethylphosphate (OP(OC2H5)3), phosphoric acid (H3PO4), phytic acid (C6H18O24P6), and a solution prepared by dissolving phosphorus oxide (P2O5) in ethanol. The resulting materials were characterized by differential scanning calorimetry and thermogravimetry (DSC / TG), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM / EDS), and by in vitro bioactivity study. The use of different precursors significantly affected the main steps of the synthesis, beginning with the gelation time. The most striking influence of these precursors in the synthesis process was observed during the thermal treatments between 700 and 1200 °C for the conversion of the gels into ceramic materials. In this case, the samples, especially those prepared using phosphoric acid, exhibited very different mineralisation behaviours, but all were proven to be bioactive with in vitro tests. The bioactivity of these materials was strongly influenced by the treatment temperature, and in the case of the crystalline materials, also by the phases present. In vitreous materials, the bioactivity decreased with the stabilisation temperature. In the crystalline materials, the in vitro bioactivity was favored by the presence of wollastonite (CaSiO3) and alpha-tricalcium phosphate (α-Ca3(PO4)2) for the system SiO2−CaO−P2O5, and by sodium calcium silicate Na2Ca2Si3O9 for the system SiO2−CaO−Na2O−P2O5. / Nos últimos anos, o processo sol-gel tem sido amplamente utilizado para a preparação de vidros e vitrocerâmicas com aplicações na área biomédica. Embora os precursores empregados nessa metodologia de síntese sejam um parâmetro muito importante, poucos estudos têm relatado suas influências na síntese desses materiais. No presente trabalho, pós bioativos vítreos e cristalinos dos sistemas SiO2−CaO−P2O5 e SiO2−CaO−Na2O−P2O5 foram sintetizados utilizando-se o processo sol-gel a partir de diferentes precursores de fósforo. Foram escolhidos o trietilfosfato (OP(OC2H5)3), o ácido fosfórico (H3PO4), o ácido fítico (C6H18O24P6) e uma solução elaborada pela dissolução de óxido de fósforo (P2O5) em etanol. Os materiais obtidos foram caracterizados por calorimetria exploratória diferencial e termogravimetria (DSC / TG), difração de raios X (DRX), espectroscopia infravermelho com transformada de Fourier (IVTF), microscopia eletrônica de varredura (MEV), espectroscopia por dispersão de energia (EDS) e quanto à bioatividade in vitro. Com a simples alternância desses precursores, as etapas principais da síntese foram significantemente influenciadas, começando pelo tempo de formação dos géis. A influência mais marcante desses precursores no processo de síntese foi verificada durante a realização de tratamentos térmicos entre 700 e 1200 °C para a conversão dos géis em materiais cerâmicos. Nesse caso, as amostras exibiram comportamento de mineralização muito diferenciado, principalmente aquelas preparadas com a utilização do ácido fosfórico. Mas, apesar disso, todos os materiais se mostraram bioativos em testes in vitro. A bioatividade dos materiais aqui desenvolvidos foi influenciada pela temperatura de tratamento térmico e, no caso dos materiais cristalinos, também pelas fases existentes. Em relação aos materiais vítreos, a bioatividade diminuiu com a temperatura de estabilização dos géis. Para os materiais cristalinos, a bioatividade in vitro foi favorecida pela presença das fases wollastonita (CaSiO3) e alfa-fosfato tricálcio (α-Ca3(PO4)2), e pela presença do silicato de sódio e cálcio Na2Ca2Si3O9 nos sistemas SiO2− CaO−P2O5 e SiO2−CaO−Na2O−P2O5, respectivamente.
3

Expressão das proteínas citoesqueléticas actina e tubulina em células osteogênicas cultivadas sobre vidro e vitrocerâmica bioativos / Expression of the cytoskeletal proteins actin and tubulin in osteogenic cells cultured on bioactive glass-based surfaces

Martins, Carolina Scanavez 03 August 2012 (has links)
A implantação de materiais vítreos e vitrocerâmicos bioativos representa estratégia terapêutica importante para se promover a formação de matriz extracelular mineralizada em defeitos ósseos críticos. Quando expostos a fluidos biológicos, estes biomateriais sofrem alterações químicas e topográficas de superfície que afetam as interações de células com sua superfície, reduzindo o espraiamento celular e alterando o padrão de marcação de proteínas do citoesqueleto. O objetivo deste estudo foi avaliar se as alterações no padrão de marcação para as proteínas citoesqueléticas actina e tubulina observadas in vitro em células osteogênicas sobre superfícies do vidro Bioglass® 45S5 e da vitrocerâmica Biosilicato®, são decorrentes de redução quantitativa na expressão do RNAm e das proteínas correspondentes. Células osteogênicas foram obtidas a partir da digestão enzimática de calvárias de ratos Wistar recémnascidos e plaqueadas sobre superfícies de Bioglass® 45S5, Biosilicato® e borosilicato (controle bioinerte) para a avaliação dos seguintes parâmetros: 1) detecção de actina e tubulina por microscopia de fluorescência; 2) expressão de RNAm para actina e tubulina por reação em cadeia da polimerase em tempo real (Real time PCR); 3) quantificação de actina e tubulina por ensaio imunoenzimático direto (ELISA), e 4) análise da morfologia celular por microscopia eletrônica de varredura (MEV). Aos 3 e 7 dias, células crescidas sobre borosilicato exibiam padrões de marcação para actina e tubulina típicos de células aderidas e espraiadas sobre substratos planos in vitro, enquanto que sobre Bioglass® 45S5 e Biosilicato® as células apresentavam áreas circulares destituídas de marcação para essas proteínas. Nos mesmos períodos, culturas crescidas sobre os materiais bioativos apresentavam alterações significantes da expressão de RNAm para actina e tubulina, embora fossem observadas apenas discretas variações na quantidade das proteínas correspondentes em relação ao borosilicato. Além disso, apenas para culturas crescidas sobre borosilicato observava-se correlação positiva entre RNAm e proteína e correspondência entre as observações por epifluorescência e os dados quantitativos. Aos 3 dias, imagens de MEV revelaram células aderidas e espraiadas sobre os materiais bioativos, parcial ou totalmente recobertas por acúmulos de material de aspecto semelhante ao da topografia do substrato, por vezes impedindo a visualização dos limites celulares. Com base nos resultados obtidos, conclui-se que as superfícies bioativas de Bioglass® 45S5 e Biosilicato® afetam a expressão de RNAm para actina e tubulina, mas não de proteína. Assim, as alterações nos padrões de marcação por fluorescência para essas proteínas devem ser atribuídas, pelo menos em parte, a acúmulos de material sobre as células, possivelmente decorrentes das reações de superfície a que estão submetidos Bioglass® 45S5 e Biosilicato® quando em contato com fluidos biológicos. / Bioactive glasses and glass-ceramics have been successfully applied in various therapeutic strategies to promote the formation of mineralized matrix in bone defects. The exposure of these materials to biological fluids results in chemical and topographical modifications that may affect the interactions of cells with the biomaterial surface, with potential effects on cytoskeletal protein expression and/or organization and cell spreading. The aim of the present study was to evaluate whether changes in the labelling pattern for the cytoskeletal proteins actin and tubulin in osteogenic cells cultured on bioactive Bioglass® 45S5 and Biosilicate® are due to altered mRNA and protein expression levels. Osteogenic cells were obtained by enzymatic digestion of newborn Wistar rat calvarial bone and plated on Bioglass® 45S5, Biosilicate® and borosilicate (bioinert control) for periods of up to 7 days. The following parameters were assayed: i) qualitative epifluorescence analysis of actin and tubulin distribution; ii) quantitative mRNA expression for actin and tubulin by real time polymerase chain reaction (real time PCR); iii) quantitative actin and tubulin expression by enzymelinked immunoabsorbent assay (ELISA), and iv) qualitative analysis of cell morphology by scanning electron microscopy (SEM). At days 3 and 7, cells grown on borosilicate showed typical actin and tubulin labeling patterns of adherent and spread cells on flat, rigid substrates, whereas those on Bioglass® 45S5 and Biosilicate® showed dark areas devoid of fluorescent signals for the cytoskeletal proteins. At the same time points, cultures grown on the bioactive materials showed significant changes in mRNA expression for actin and tubulin, although only slight differences in the amount of actin and tubulin were detected compared with borosilicate. Moreover, a positive correlation between mRNA and protein expression levels as well as a correspondence between epifluorescence imaging and the quantitative data were only detected for cultures grown on borosilicate. SEM analysis revealed that cells cultured on bioactive surfaces were partly or totally covered with material accumulations, whose characteristics resembled the ones for the substrate topography, and which, in some cases, prevented the visualization of the cell limits. In conclusion, Bioglass® 45S5 and Biosilicate® affect actin and tubulin mRNA levels, but not the corresponding protein expression, in osteogenic cell cultures. Thus, the observed changes in the labeling pattern for these proteins should be attributed, at least in part, to the accumulation of materials on the cell surface, likely due to substrate reactions that take place on Bioglass® 45S5 and Biosilicate® when exposed to the cell culture medium.
4

Expressão das proteínas citoesqueléticas actina e tubulina em células osteogênicas cultivadas sobre vidro e vitrocerâmica bioativos / Expression of the cytoskeletal proteins actin and tubulin in osteogenic cells cultured on bioactive glass-based surfaces

Carolina Scanavez Martins 03 August 2012 (has links)
A implantação de materiais vítreos e vitrocerâmicos bioativos representa estratégia terapêutica importante para se promover a formação de matriz extracelular mineralizada em defeitos ósseos críticos. Quando expostos a fluidos biológicos, estes biomateriais sofrem alterações químicas e topográficas de superfície que afetam as interações de células com sua superfície, reduzindo o espraiamento celular e alterando o padrão de marcação de proteínas do citoesqueleto. O objetivo deste estudo foi avaliar se as alterações no padrão de marcação para as proteínas citoesqueléticas actina e tubulina observadas in vitro em células osteogênicas sobre superfícies do vidro Bioglass® 45S5 e da vitrocerâmica Biosilicato®, são decorrentes de redução quantitativa na expressão do RNAm e das proteínas correspondentes. Células osteogênicas foram obtidas a partir da digestão enzimática de calvárias de ratos Wistar recémnascidos e plaqueadas sobre superfícies de Bioglass® 45S5, Biosilicato® e borosilicato (controle bioinerte) para a avaliação dos seguintes parâmetros: 1) detecção de actina e tubulina por microscopia de fluorescência; 2) expressão de RNAm para actina e tubulina por reação em cadeia da polimerase em tempo real (Real time PCR); 3) quantificação de actina e tubulina por ensaio imunoenzimático direto (ELISA), e 4) análise da morfologia celular por microscopia eletrônica de varredura (MEV). Aos 3 e 7 dias, células crescidas sobre borosilicato exibiam padrões de marcação para actina e tubulina típicos de células aderidas e espraiadas sobre substratos planos in vitro, enquanto que sobre Bioglass® 45S5 e Biosilicato® as células apresentavam áreas circulares destituídas de marcação para essas proteínas. Nos mesmos períodos, culturas crescidas sobre os materiais bioativos apresentavam alterações significantes da expressão de RNAm para actina e tubulina, embora fossem observadas apenas discretas variações na quantidade das proteínas correspondentes em relação ao borosilicato. Além disso, apenas para culturas crescidas sobre borosilicato observava-se correlação positiva entre RNAm e proteína e correspondência entre as observações por epifluorescência e os dados quantitativos. Aos 3 dias, imagens de MEV revelaram células aderidas e espraiadas sobre os materiais bioativos, parcial ou totalmente recobertas por acúmulos de material de aspecto semelhante ao da topografia do substrato, por vezes impedindo a visualização dos limites celulares. Com base nos resultados obtidos, conclui-se que as superfícies bioativas de Bioglass® 45S5 e Biosilicato® afetam a expressão de RNAm para actina e tubulina, mas não de proteína. Assim, as alterações nos padrões de marcação por fluorescência para essas proteínas devem ser atribuídas, pelo menos em parte, a acúmulos de material sobre as células, possivelmente decorrentes das reações de superfície a que estão submetidos Bioglass® 45S5 e Biosilicato® quando em contato com fluidos biológicos. / Bioactive glasses and glass-ceramics have been successfully applied in various therapeutic strategies to promote the formation of mineralized matrix in bone defects. The exposure of these materials to biological fluids results in chemical and topographical modifications that may affect the interactions of cells with the biomaterial surface, with potential effects on cytoskeletal protein expression and/or organization and cell spreading. The aim of the present study was to evaluate whether changes in the labelling pattern for the cytoskeletal proteins actin and tubulin in osteogenic cells cultured on bioactive Bioglass® 45S5 and Biosilicate® are due to altered mRNA and protein expression levels. Osteogenic cells were obtained by enzymatic digestion of newborn Wistar rat calvarial bone and plated on Bioglass® 45S5, Biosilicate® and borosilicate (bioinert control) for periods of up to 7 days. The following parameters were assayed: i) qualitative epifluorescence analysis of actin and tubulin distribution; ii) quantitative mRNA expression for actin and tubulin by real time polymerase chain reaction (real time PCR); iii) quantitative actin and tubulin expression by enzymelinked immunoabsorbent assay (ELISA), and iv) qualitative analysis of cell morphology by scanning electron microscopy (SEM). At days 3 and 7, cells grown on borosilicate showed typical actin and tubulin labeling patterns of adherent and spread cells on flat, rigid substrates, whereas those on Bioglass® 45S5 and Biosilicate® showed dark areas devoid of fluorescent signals for the cytoskeletal proteins. At the same time points, cultures grown on the bioactive materials showed significant changes in mRNA expression for actin and tubulin, although only slight differences in the amount of actin and tubulin were detected compared with borosilicate. Moreover, a positive correlation between mRNA and protein expression levels as well as a correspondence between epifluorescence imaging and the quantitative data were only detected for cultures grown on borosilicate. SEM analysis revealed that cells cultured on bioactive surfaces were partly or totally covered with material accumulations, whose characteristics resembled the ones for the substrate topography, and which, in some cases, prevented the visualization of the cell limits. In conclusion, Bioglass® 45S5 and Biosilicate® affect actin and tubulin mRNA levels, but not the corresponding protein expression, in osteogenic cell cultures. Thus, the observed changes in the labeling pattern for these proteins should be attributed, at least in part, to the accumulation of materials on the cell surface, likely due to substrate reactions that take place on Bioglass® 45S5 and Biosilicate® when exposed to the cell culture medium.
5

Efeitos do laser de baixa intensidade e do Biosilicato® no reparo ósseo de ratas osteopênicas

Bossini, Paulo Sérgio 26 August 2010 (has links)
Made available in DSpace on 2016-06-02T20:18:13Z (GMT). No. of bitstreams: 1 3309.pdf: 4224881 bytes, checksum: 86928c516da5db9abcf5f60af6b27178 (MD5) Previous issue date: 2010-08-26 / Financiadora de Estudos e Projetos / Osteoporosis is a systemic skeletal disease characterized by low bone density and microarchitectural deterioration of bone tissue, with consequent increase of the risk of fractures. Frequently, the lower mineral density due to osteoporosis leads to a delay in fracture healing rates and bone repair quality. Within this context, biochemical and biophysical resources have been studied in an attempt to enhance bone consolidation. Two of the most promising treatments are the use of low level laser therapy (LLLT) and bioactive materials. Several studies suggest that both resources are able to stimulate osteoblast proliferation and osteogenesis at the fracture site, promoting a greater deposition of bone mass. Thus, two studies were performed with the aim of evaluating the effects of LLLT (Ga-Al-As, 830nm, 100mW), with the fluences of 60J/cm² and 120J/cm² and a bioactive ceramic (Biosilicate®), used alone or associated on consolidation of bone defects induced in the tibiae of osteopenic rats. A total of 60 female Wistar rats (12 weeks-old, ± 250g) were submitted to ovariectomy (OVX) and, sixty days after the induction, a bone defect was performed in both tibiae of all animals. The animals were randomly divided into six groups (n=10). In the first study, the effects of LLLT on the bone repair of osteopenic rats were evaluated in three groups: group bone defect control without any treatment (GC); group bone defect irradiated with LLLT, at 60J/cm² (GL60); and group bone defect irradiated with LLLT, at 120J/cm² (GL120). The animals were submitted to laser irradiation at a single point on the bone defect for seven sessions, on alternated days. In the laser treated groups, at both fluences, it was possible to observe a greater amount of new bone formation compared to the control. Birefringence analysis demonstrated that irradiated bone defects presented greater deposition and improved the structural organization of collagen fibers, mainly in the group treated with the laser, at 120J/cm². COX-2, CBFA-1 and VEGF immunoreactivity was detected in a similar manner either 60J/cm2 or 120J/cm2 fluences. However, no differences were observed in the biomechanical analysis. Therefore, the LLLT, at the two fluences used, improved the bone repair in the tibia of osteopenic rats. In the second study, the effects of Biosilicate® associated with LLLT on bone repair in osteopenic rats were analyzed in four groups: group bone defect control without any treatment (GC); group bone defect filled with Biosilicate® (GB); group bone defect filled with Biosilicate®, irradiated with LLLT, at 60J/cm2 (GBL60); and group bone defect filled with Biosilicate®, irradiated with LLLT, at 120J/cm2 (GBL120). Biosilicate® was used in the form of particles with granulometry of 180-212μm and the treated animals were irradiated with laser at a single point on the bone defect for seven sessions, on alternated days. The results demonstrated that the LLLT, with fluences of 60J/cm² and 120J/cm² stimulated the expression of COX-2 in the circumjacent cells of the biomaterial, increased of the collagen deposition and the biomechanical bone properties. Morphometric analysis revealed that the animals with bone defects filled with Biosilicate® and irradiated with laser, at 120J/cm² showed a higher amount of newly formed bone compared to the other groups. Thus, the LLLT, mainly in fluency 120J/cm² in contact with Biosilicate® improved the bone repair process in osteopenic rats. These findings are fundamental in elucidating the biological mechanisms involved in the repair of fractures with difficult consolidation, especially those associated with bone metabolic disease processes, such as osteoporosis. / A osteoporose é uma doença esquelética sistêmica caracterizada por baixa densidade óssea e deterioração da microarquitetura do tecido ósseo, com consequente aumento do risco de fraturas. Fraturas de difícil consolidação são comumente encontradas em pacientes osteoporóticos com altos índices de morbidade e mortalidade. Dentro desse contexto, recursos biofísicos e bioquímicos têm sido estudados na tentativa de minimizar o tempo de consolidação óssea, destacando-se o uso da terapia laser de baixa intensidade (LLLT) e dos materiais bioativos. Vários estudos sugerem que ambos os recursos são capazes de estimular a proliferação de osteoblastos e a osteogênese no local da fratura, promovendo uma maior deposição de massa óssea, fundamental para o processo de consolidação. Diante disso, foram realizados dois estudos com o objetivo de verificar os efeitos da LLLT (Ga-Al-As, 830nm, 100mW), nas fluências de 60J/cm² e 120J/cm² e de uma vitrocerâmica bioativa (Biosilicato®), utilizados independentemente ou associados, na consolidação de defeitos ósseos induzidos em tíbias de ratas osteopênicas. Um total de 60 ratas da linhagem Wistar (12 semanas de idade, ± 250g) foram submetidas à ovarectomia (OVX) e, sessenta dias após a indução, foi realizado um defeito ósseo em ambas as tíbias de todos os animais, os quais foram distribuídos aleatoriamente em seis grupos com dez animais cada. No primeiro estudo, foram avaliados os efeitos da LLLT sobre o reparo ósseo de ratas osteopênicas, a partir de três grupos experimentais: grupo controle com defeito ósseo sem tratamento (GC); grupo defeito ósseo tratado com laser 60J/cm² (GL60) e grupo defeito ósseo tratado com laser 120J/cm² (GL120). Os animais foram submetidos à irradiação laser em um único ponto sobre o defeito ósseo por sete sessões, em dias alternados. Nos grupos tratados com laser, em ambas as fluências, foi evidenciada uma maior quantidade de osso neoformado comparado ao controle. A análise de birrefringência demonstrou que os defeitos ósseos irradiados apresentaram maior deposição e melhor organização estrutural das fibras colágenas, principalmente no grupo tratado com laser na fluência de 120J/cm². A imunorreatividade à COX-2, CBFA-1 e VEGF foi detectada de forma similar nas duas fluências utilizadas e na análise biomecânica não houve diferença estatística significativa entre os grupos. Portanto, a LLLT, nas duas fluências utilizadas, estimulou o reparo ósseo em tíbias de ratas osteopênicas. No segundo estudo, foram analisados os efeitos do Biosilicato® associado à LLLT no reparo ósseo de ratas osteopênicas, a partir de quatro grupos experimentais: grupo controle com defeito ósseo sem tratamento (GC); grupo defeito ósseo preenchido com Biosilicato® (GB); grupo defeito ósseo preenchido com Biosilicato® e irradiado com LLLT, com fluência de 60J/cm² (GBL60); e grupo defeito ósseo preenchido com Biosilicato® e irradiado com LLLT, com fluência de 120J/cm² (GBL120). O Biosilicato® foi utilizado na forma de partículas com granulometria de 180-212μm e os animais tratados com laser foram irradiados em um único ponto sobre o defeito ósseo por sete sessões, em dias alternados. Os resultados demonstraram que a LLLT, nas fluências de 60J/cm² e 120J/cm², estimulou a expressão de COX-2 nas células circunjacentes ao biomaterial, promoveu aumento na deposição de fibras colágenas e na resposta biomecânica. A análise morfométrica revelou que os animais com defeitos ósseos preenchidos com Biosilicato® e submetidos à irradiação laser com fluência de 120J/cm² apresentaram maior área de osso neoformado quando comparados aos animais dos demais grupos. Desse modo, a LLLT, principalmente na fluência de 120J/cm², associada à aplicação do Biosilicato®, favoreceu o processo de reparo ósseo em defeitos induzidos em tíbias de ratas osteopênicas. Tais resultados são fundamentais na elucidação dos mecanismos biológicos envolvidos no reparo de fraturas de difícil consolidação, em especial àquelas associadas a processos patológicos osteometabólicos, como a osteoporose.
6

Os efeitos do Biosilicato® e do laser terapêutico de baixa potência no processo de consolidação em tíbias de ratos / The effects of biosilicate® and low level laser therapy on bone consolodation in rats

T, Poliani de Oliveira 21 December 2009 (has links)
Made available in DSpace on 2016-08-17T18:39:32Z (GMT). No. of bitstreams: 1 2923.pdf: 9264279 bytes, checksum: 86047341701bdb7e402b715fb158961b (MD5) Previous issue date: 2009-12-21 / Financiadora de Estudos e Projetos / Fractures of delayed consolidation and fractures with non-union are commonly found in medical practice and are associated with high morbidity and mortality. Within this context, biochemical and biophysical resource have been studied in an attempt enhance bone healing. Among these may be highlighted the use of bioactive materials and low level laser therapy (LLLT). Several studies suggest that both resources are able to stimulate proliferation of osteoblasts and osteogenesis at the fracture site, promoting a greater deposition of bone mass and accelerating the process of consolidation. So the main purpose of the present work was to evaluate the effects of low-intensity laser (λ = 830nm), with fluencies of 60J/cm² and 120J/cm² and a bioactive ceramic, Biosilicato®, used alone or associated on bone consolidation of the tibial fractures in healthy rats. For the study 60 male Wistar rats were randomly divided in 6 groups: group bone defect control (GCF); group bone defect irradiated with LLLT, at 60 J/cm2 (GL60); group bone defect irradiated with LLLT, at 120 J/cm2 (GL120); group bone defect filled with Biosilicate® (GB); group bone defect filled with Biosilicate® , irradiated with LLLT, at 60 J/cm2 (GB60); and group bone defect filled with Biosilicate®, irradiated with LLLT, at 120 J/cm2 (GB120). A low-energy GaAlAs 830nm, CW, 100 mW, 60 and 120 J.cm² was used in this study. The rats were anesthetized by intraperitoneal injection of ketamine and xylazine 2% and a standardized 2.0-mm-diameter bone defect was created by using a motorized drill under copious irrigation with saline solution. Laser irradiation was initiated immediately after the surgery procedure and it was performed every 48 h for 14 days. After 14 day post-surgery, biomechanical analysis revealed no statistical differences between experimental groups. However, the morphological and morphometric analysis showed that the laser, in the two fluencies evaluated showed values statistically higher than control group and the Biosilicate®. Interestingly, the groups treated with Biosilicate® and laser, in two fluencies, showed statistically lower values of newly formed bone in the area of the defect even when compared with the control group. The scanning electron microscopy showed an intense presence of the biomaterial in bone defects of their animals. From the results obtained in this study, we concluded that the low-intensity laser was more effective in the process of bone repair when compared with biomaterial or the two resources associated. / Fraturas com atraso na consolidação e fraturas com não-união óssea são comumente encontradas na prática médica e estão associadas a altos índices de morbidade e mortalidade. Dentro deste contexto, recursos biofísicos e bioquímicos têm sido estudados na tentativa de minimizar o tempo de consolidação óssea. Dentre estes, podem ser destacados o uso dos materiais bioativos e do laser terapêutico de baixa potência (LLLT). Vários estudos sugerem que ambos os recursos são capazes de estimular a proliferação de osteoblastos e a osteogênese no local da fratura, promovendo uma maior deposição de massa óssea e acelerando o processo de consolidação. Diante disso, este estudo teve o objetivo de verificar os efeitos do laser de baixa intensidade (λ = 830nm), com fluências de 60J/cm² e 120J/cm² e de uma vitrocerâmica bioativa, Biosilicato®, utilizados independentemente ou associados na consolidação óssea de fraturas tibiais em ratos saudáveis. Para o estudo, foram utilizados 60 ratos, da linhagem Wistar, distribuídos aleatoriamente nos seguintes grupos: grupo GCF: controle, com fratura e sem tratamento; grupo GL60: fratura tratado com LLLT, fluência de 60J/cm²; grupo GL120: fratura tratado com LLLT, fluência de 120J/cm²; grupo GB: fratura tratado com Biosilicato®; grupo GB60: fratura tratado com Biosilicato® e LLLT, fluência de 60J/cm² e grupo GB120: fratura tratado com Biosilicato® e LLLT, fluência de 120J/cm². Foi utilizado um laser de baixa potência As-Ga-Al, 830nm, CW, 100 mW, 60 e120 J/cm². Os ratos foram anestesiados por injeção intraperitonial de Ketamina e Xilasina. Em seguida, realizou-se defeitos ósseos de 2mm de diâmetro nas tíbias dos animais. A irradiação laser iniciou-se imediatamente após a cirurgia e a cada 48 horas totalizando, 7 aplicações em 14 dias. O sacrifício foi realizado no 14º dia. A análise biomecânica das tíbias não revelou diferenças estatísticas entre os grupos experimentais. No entanto, a análise morfológica e morfométrica revelaram que o grupo laser, nas duas fluências avaliadas, apresentou valores estatisticamente maiores que o grupo controle e o grupo Biosilicato®. Interessante, os grupos tratados com a associação do biomaterial e laser, nas duas fluências, apresentaram valores estatisticamente menores de osso neoformado, mesmo quando comparados ao grupo controle. A microscopia eletrônica de varredura mostrou uma intensa presença do biomaterial nos defeitos ósseos dos respectivos animais. A partir dos resultados obtidos neste estudo, pode-se concluir que o laser terapêutico de baixa potência foi mais eficaz no processo de reparo ósseo quando comparado ao biomaterial, ou mesmo com as duas modalidades de tratamento associadas.
7

Os efeitos do Biosilicato® e do laser terapêutico de baixa potência no processo de consolidação em tíbias de ratos / The effects of biosilicate® and low level laser therapy on bone consolodation in rats

Oliveira, Poliani de 21 December 2009 (has links)
Made available in DSpace on 2016-08-17T18:39:33Z (GMT). No. of bitstreams: 1 2329.pdf: 1318463 bytes, checksum: 91365257065327c5dbaf7e6100a4e5b1 (MD5) Previous issue date: 2009-12-21 / Universidade Federal de Sao Carlos / Fractures of delayed consolidation and fractures with non-union are commonly found in medical practice and are associated with high morbidity and mortality. Within this context, biochemical and biophysical resource have been studied in an attempt enhance bone healing. Among these may be highlighted the use of bioactive materials and low level laser therapy (LLLT). Several studies suggest that both resources are able to stimulate proliferation of osteoblasts and osteogenesis at the fracture site, promoting a greater deposition of bone mass and accelerating the process of consolidation. So the main purpose of the present work was to evaluate the effects of low-intensity laser (λ = 830nm), with fluencies of 60J/cm² and 120J/cm² and a bioactive ceramic, Biosilicato®, used alone or associated on bone consolidation of the tibial fractures in healthy rats. For the study 60 male Wistar rats were randomly divided in 6 groups: group bone defect control (GCF); group bone defect irradiated with LLLT, at 60 J/cm2 (GL60); group bone defect irradiated with LLLT, at 120 J/cm2 (GL120); group bone defect filled with Biosilicate® (GB); group bone defect filled with Biosilicate® , irradiated with LLLT, at 60 J/cm2 (GB60); and group bone defect filled with Biosilicate®, irradiated with LLLT, at 120 J/cm2 (GB120). A low-energy GaAlAs 830nm, CW, 100 mW, 60 and 120 J.cm² was used in this study. The rats were anesthetized by intraperitoneal injection of ketamine and xylazine 2% and a standardized 2.0-mm-diameter bone defect was created by using a motorized drill under copious irrigation with saline solution. Laser irradiation was initiated immediately after the surgery procedure and it was performed every 48 h for 14 days. After 14 day post-surgery, biomechanical analysis revealed no statistical differences between experimental groups. However, the morphological and morphometric analysis showed that the laser, in the two fluencies evaluated showed values statistically higher than control group and the Biosilicate®. Interestingly, the groups treated with Biosilicate® and laser, in two fluencies, showed statistically lower values of newly formed bone in the area of the defect even when compared with the control group. The scanning electron microscopy showed an intense presence of the biomaterial in bone defects of their animals. From the results obtained in this study, we concluded that the low-intensity laser was more effective in the process of bone repair when compared with biomaterial or the two resources associated. / Fraturas com atraso na consolidação e fraturas com não-união óssea são comumente encontradas na prática médica e estão associadas a altos índices de morbidade e mortalidade. Dentro deste contexto, recursos biofísicos e bioquímicos têm sido estudados na tentativa de minimizar o tempo de consolidação óssea. Dentre estes, podem ser destacados o uso dos materiais bioativos e do laser terapêutico de baixa potência (LLLT). Vários estudos sugerem que ambos os recursos são capazes de estimular a proliferação de osteoblastos e a osteogênese no local da fratura, promovendo uma maior deposição de massa óssea e acelerando o processo de consolidação. Diante disso, este estudo teve o objetivo de verificar os efeitos do laser de baixa intensidade (λ = 830nm), com fluências de 60J/cm² e 120J/cm² e de uma vitrocerâmica bioativa, Biosilicato®, utilizados independentemente ou associados na consolidação óssea de fraturas tibiais em ratos saudáveis. Para o estudo, foram utilizados 60 ratos, da linhagem Wistar, distribuídos aleatoriamente nos seguintes grupos: grupo GCF: controle, com fratura e sem tratamento; grupo GL60: fratura tratado com LLLT, fluência de 60J/cm²; grupo GL120: fratura tratado com LLLT, fluência de 120J/cm²; grupo GB: fratura tratado com Biosilicato®; grupo GB60: fratura tratado com Biosilicato® e LLLT, fluência de 60J/cm² e grupo GB120: fratura tratado com Biosilicato® e LLLT, fluência de 120J/cm². Foi utilizado um laser de baixa potência As-Ga-Al, 830nm, CW, 100 mW, 60 e120 J/cm². Os ratos foram anestesiados por injeção intraperitonial de Ketamina e Xilasina. Em seguida, realizou-se defeitos ósseos de 2mm de diâmetro nas tíbias dos animais. A irradiação laser iniciou-se imediatamente após a cirurgia e a cada 48 horas totalizando, 7 aplicações em 14 dias. O sacrifício foi realizado no 14º dia. A análise biomecânica das tíbias não revelou diferenças estatísticas entre os grupos experimentais. No entanto, a análise morfológica e morfométrica revelaram que o grupo laser, nas duas fluências avaliadas, apresentou valores estatisticamente maiores que o grupo controle e o grupo Biosilicato®. Interessante, os grupos tratados com a associação do biomaterial e laser, nas duas fluências, apresentaram valores estatisticamente menores de osso neoformado, mesmo quando comparados ao grupo controle. A microscopia eletrônica de varredura mostrou uma intensa presença do biomaterial nos defeitos ósseos dos respectivos animais. A partir dos resultados obtidos neste estudo, pode-se concluir que o laser terapêutico de baixa potência foi mais eficaz no processo de reparo ósseo quando comparado ao biomaterial, ou mesmo com as duas modalidades de tratamento associadas.

Page generated in 0.0806 seconds