Spelling suggestions: "subject:"matematerials -- bimechanical properties."" "subject:"matematerials -- bymechanical properties.""
71 |
Fracture properties of fibre and nano reinforced composite structuresRamsaroop, Avinash January 2007 (has links)
Thesis (M.Tech.: Mechanical Engineering)-Dept. of Mechanical Engineering, Durban University of Technology, 2007
xvi, 123 leaves / Interlaminar cracking or delamination is an inherent disadvantage of composite materials. In this study the fracture properties of nano and fibre-reinforced polypropylene and epoxy composite structures are examined. These structures were subjected to various tests including Single Edge Notched Bend (SENB) and Mixed Mode Bending (MMB) tests. Polypropylene nanocomposites infused with 0.5, 1, 2, 3 and 5 weight % nanoclays showed correspondingly increasing fracture properties. The 5 weight % specimen exhibited 161 % improvement in critical stress intensity factor (KIC) over virgin polypropylene. XRD and TEM studies show an increase in the intercalated morphology and the presence of agglomerated clay sites with an increase in clay
loading. The improvement in KIC values may be attributed to the change in structure.
Tests on the fibre-reinforced polypropylene composites reveal that the woven fibre structure carries 100 % greater load and exhibits 275 % lower crack propagation rate than the chopped fibre specimen. Under MMB conditions, the woven fibre structure exhibited a delamination propagation rate of 1.5 mm/min which suggests delamination growth propagates slower under Mode I dominant conditions. The woven fibre / epoxy structure shows 147 % greater tensile modulus, 63 % greater critical stress intensity factor (KIC), and 184 % lower crack propagation
rate than the chopped fibre-reinforced epoxy composite. MMB tests reveal that the load carrying capability of the specimens increased as the mode-mix ratio decreased, corresponding to an increase in the Mode II component. Delamination was through fibre–matrix interface with no penetration of fibre layers. A failure envelope was developed and tested and may be used to
determine the critical applied load for any mode-mix ratio.
The 5 weight % nanocomposite specimen exhibited a greater load carrying capability and attained a critical stress intensity factor that was 10 % less than that of the fibre-reinforced polypropylene structure, which had three times the reinforcement weight. Further, the nanocomposite exhibited superior strain energy release rates to a material with ten times the reinforcement weight. The hybrid structure exhibited 27 % increase in tensile modulus over the conventional fibre-reinforced structure. Under MMB conditions, no significant increase in load carrying capability or strain energy release rate over the conventional composite was observed.
However, the hybrid structure was able to resist delamination initiation for a longer period, and it also exhibited lower delamination propagation rates.
|
72 |
Materials research on metallized aluminum-nitride for microelectronic packagingNewberg, Carl Edward, 1962- January 1988 (has links)
The use of aluminum nitride as a substrate material for microelectronics is examined. A brief look at thermal, mechanical, and electrical properties of aluminum nitride show that it is a viable alternative material for this use. A study of the interfaces between aluminum nitride and several thick film pastes (palladium silver conductor, ruthenium oxide resistor, and gold conductor) was performed with optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy. Results of this investigation showed that the contaminants in the substrate material that affect thermal conductivity do not affect the adhesion of the thick film pastes. However, it was found that the lack of certain elements in the binder of the thick film paste could lead to weaker adhesion, and severe degradation of the thick film's adhesion during thermal cycling.
|
73 |
Mechanical and structural properties of interlocking assembliesKhor, Han Chuan January 2008 (has links)
A novel way to ensure stability of mortarless structures topological interlocking is examined. In this type of interlocking the overall shape and arrangement of the building blocks are chosen in such a way that the movement of each block is prevented by its neighbours. (The methodological roots of topological interlocking can be found in two ancient structures: the arch and the dry stone wall.) The topological interlocking proper is achieved by two types of blocks: simple convex forms such as the Platonic solids (tetrahedron, cube, octahedron, dodecahedron and icosahedron) that allow plate-like assemblies and specially engineered shapes of the block surfaces that also allow assembling corners. An important example of the latter so-called Osteomorphic block is the main object of this research with some insight being provided by numerical modelling of plates assembled from tetrahedra and cubes in the interlocking position. The main structural feature of the interlocking assemblies is the need of the peripheral constraint (for the Osteomorphic blocks this requirement can be relaxed to uni-directional constraint) to keep their integrity. We studied the least visible constraint structure internal pre-stressed cables which run through pre-fabricated holes in Osteomorphic blocks. It is shown that the pre-stressed steel cables can provide the necessary constraint force without creating appreciable residual stresses in the cables, however the points of connection of the cables are the weakest points and need special treatment. The main mechanical feature of the interlocking structures is the absence of block bonding. As a result, the blocks have a certain freedom of translational and rotational movement (within the kinematic constraints of the assembly) and their contacts have reduced shear stresses which hampers fracture propagation from one block to another. These features pre-determine the specific ways the interlocking assemblies behave under mechanical and dynamic impacts. These were studied in this project and the following results are reported. As the blocks in the interlocking structure are not connected, the main issue is the bearing capacity. The study of the least favourable, central point loading in the direction normal to the structure shows elevated large-scale fracture toughness (resistance to fracture propagation). However when the central force imposes considerable bending the generated tensile membrane stresses assist fracturing of the loaded block. Prevention of bending considerably enhances the strength therefore the most efficient application of the interlocking structures would be in protective coatings and covers. Furthermore, proper selection of the material properties and the interface friction can increase the system overall strength and bearing capacity. The results of the computer simulations suggest that both Youngs modulus and the friction coefficient are the key parameters whose increase improves the bearing capacity of topologically interlocking assemblies.
|
74 |
Evaluation of the Crack Initiation and Crack Growth Characteristics in Hybrid Titanium Composite Laminates via In Situ RadiographyHammond, Matthew Wesley 15 August 2005 (has links)
Hybrid Titanium Composite Laminates (HTCL) have vast potential for future commercial aircraft development. In order for this potential to be properly utilized the HTCLs material properties must first be well understood and obtained through experimentation. Crack initiation and crack growth characteristics of HTCLs are dependent on the heat treatment of the embedded constituent titanium foil. While high strength titanium foils may delay crack initiation, there may be an adverse effect of unsuitable crack growth rates in the HTCLs. Literature has indicated that when properly designed, cracks in HTCLs can arrest due to fiber bridging mechanisms and other crack closure mechanisms. Traditional surface inspection techniques employed on facesheet laminate evaluations will not be able to properly monitor the internal crack growth and damage progression for the internal plies.
The main objective of the this joint Georgia Tech/Boeing research project was to determine and compare crack initiation and crack growth characteristics of different heat-treated -Ti 15-3 titanium foil embedded in HTCLs. Georgia Tech utilized a unique capability of x-raying the internal foils of the HTCL specimen in a servo-hydraulic test frame while under load. The titanium foil in this study represented four different heat treatments that result in four increasing levels of strength and decreasing levels of elongation. Specifically, open-hole HTCL coupons were tested at four stress load levels under constant amplitude fatigue cycles to determine a-N curves for the HTCL layups evaluated. The layup evaluated was [45/0/-45/0/Ti/0/-45/0/45]. Crack growth rates were determined once the initiated crack was detected via radiographic exposure. Radiographic delamination analysis and thermoelastic stress analysis techniques were employed to determine additional damage mechanisms in the laminate. Analytical and finite element methods were utilized to determine ply stresses. Additionally, titanium foil properties were determined via dog-bone coupons for each of the four heat treatment conditions.
|
75 |
Fracture properties of fibre and nano reinforced composite structuresRamsaroop, Avinash January 2007 (has links)
Thesis (M.Tech.: Mechanical Engineering)-Dept. of Mechanical Engineering, Durban University of Technology, 2007
xvi, 123 leaves / Interlaminar cracking or delamination is an inherent disadvantage of composite materials. In this study the fracture properties of nano and fibre-reinforced polypropylene and epoxy composite structures are examined. These structures were subjected to various tests including Single Edge Notched Bend (SENB) and Mixed Mode Bending (MMB) tests. Polypropylene nanocomposites infused with 0.5, 1, 2, 3 and 5 weight % nanoclays showed correspondingly increasing fracture properties. The 5 weight % specimen exhibited 161 % improvement in critical stress intensity factor (KIC) over virgin polypropylene. XRD and TEM studies show an increase in the intercalated morphology and the presence of agglomerated clay sites with an increase in clay
loading. The improvement in KIC values may be attributed to the change in structure.
Tests on the fibre-reinforced polypropylene composites reveal that the woven fibre structure carries 100 % greater load and exhibits 275 % lower crack propagation rate than the chopped fibre specimen. Under MMB conditions, the woven fibre structure exhibited a delamination propagation rate of 1.5 mm/min which suggests delamination growth propagates slower under Mode I dominant conditions. The woven fibre / epoxy structure shows 147 % greater tensile modulus, 63 % greater critical stress intensity factor (KIC), and 184 % lower crack propagation
rate than the chopped fibre-reinforced epoxy composite. MMB tests reveal that the load carrying capability of the specimens increased as the mode-mix ratio decreased, corresponding to an increase in the Mode II component. Delamination was through fibre–matrix interface with no penetration of fibre layers. A failure envelope was developed and tested and may be used to
determine the critical applied load for any mode-mix ratio.
The 5 weight % nanocomposite specimen exhibited a greater load carrying capability and attained a critical stress intensity factor that was 10 % less than that of the fibre-reinforced polypropylene structure, which had three times the reinforcement weight. Further, the nanocomposite exhibited superior strain energy release rates to a material with ten times the reinforcement weight. The hybrid structure exhibited 27 % increase in tensile modulus over the conventional fibre-reinforced structure. Under MMB conditions, no significant increase in load carrying capability or strain energy release rate over the conventional composite was observed.
However, the hybrid structure was able to resist delamination initiation for a longer period, and it also exhibited lower delamination propagation rates.
|
76 |
Electrodeposition of Nickel and Nickel Alloy Coatings with Layered Silicates for Enhanced Corrosion Resistance and Mechanical PropertiesTientong, Jeerapan 08 1900 (has links)
The new nickel/layered silicate nanocomposites were electrodeposited from different pHs to study the influence on the metal ions/layered silicate plating solution and on the properties of the deposited films. Nickel/layered silicate nanocomposites were fabricated from citrate bath atacidic pHs (1.6−3.0), from Watts’ type solution (pH ~4-5), and from citrate bath at basic pH (~9). Additionally, the new nickel/molybdenum/layered silicate nanocomposites were electrodeposited from citrate bath at pH 9.5. The silicate, montmorillonite (MMT), was exfoliated by stirring in aqueous solution over 24 hours. The plating solutions were analyzed for zeta potential, particle size, viscosity, and conductivity to investigate the effects of the composition at various pHs. The preferred crystalline orientation and the crystalline size of nickel, nickel/layered silicate, nickel/molybdenum, and nickel/molybdenum/layered silicate films were examined by X-ray diffraction. The microstructure of the coatings and the surface roughness was investigated by scanning electron microscopy and atomic force microscopy. Nickel/molybdenum/layered silicate nanocomposites containing low content of layered silicate (1.0 g/L) had increase 32 % hardness and 22 % Young’s modulus values over the pure nickel/molybdenum alloy films. The potentiodynamic polarization and electrochemical impedance measurements showed that the nickel/molybdenum/layered silicate nanocomposite layers have higher corrosion resistance in 3.5% NaCl compared to the pure alloy films. The corrosion current density of the nickel/molybdenum/layered silicate nanocomposite composed of 0.5 g/L MMT is 0.63 µA·cm-2 as compare to a nickel/molybdenum alloy which is 2.00 µA·cm-2.
|
77 |
Feasibility of a New Technique to Determine Dynamic Tensile Behavior of Brittle MaterialsDean, Andrew W. 05 1900 (has links)
Dynamic tensile characterization of geo-materials is critical to the modeling and design of protective structures that are often made of concrete. One of the most commonly used techniques currently associated with this type of testing is performed with a Kolsky bar and is known as the spall technique. The validity of the data from the spall technique is highly debated because the necessary boundary conditions for the experiment are not satisfied. By using a technique called pulse shaping, a new “controlled” spall technique was developed to satisfy all boundary conditions so that the analyzed data may be useful in modeling and design. The results from this project were promising and show the potential to revolutionize the way Kolsky bar testing is performed.
|
78 |
Fabrication of silicon-based nano-structures and their scaling effects on mechanical and electrical properties / Fabrication of silicon-based nanostructures and their scaling effects on mechanical and electrical propertiesLi, Bin, 1974 May 21- 29 August 2008 (has links)
Silicon-based nanostructures are essential building blocks for nanoelectronic devices and nano-electromechanical systems (NEMS), and their mechanical and electrical properties play an important role in controlling the functionality and reliability of the nano-devices. The objective of this dissertation is twofold: The first is to investigate the mechanical properties of silicon nanolines (SiNLs) with feature size scaled into the tens of nanometer level. And the second is to study the electron transport in nickel silicide formed on the SiNLs. For the first study, a fabrication process was developed to form nanoscale Si lines using an anisotropic wet etching technique. The SiNLs possessed straight and nearly atomically flat sidewalls, almost perfectly rectangular cross sections and highly uniform linewidth at the nanometer scale. To characterize mechanical properties, an atomic force microscope (AFM) based nanoindentation system was employed to investigate three sets of silicon nanolines. The SiNLs had the linewidth ranging from 24 nm to 90 nm, and the aspect ratio (Height/linewidth) from 7 to 18. During indentation, a buckling instability was observed at a critical load, followed by a displacement burst without a load increase, then a fully recoverable deformation upon unloading. For experiments with larger indentation displacements, irrecoverable indentation displacements were observed due to fracture of Si nanolines, with the strain to failure estimated to be from 3.8% to 9.7%. These observations indicated that the buckling behavior of SiNLs depended on the combined effects of load, line geometry, and the friction at contact. This study demonstrated a valuable approach to fabrication of well-defined Si nanoline structures and the application of the nanoindentation method for investigation of their mechanical properties at the nanoscale. For the study of electron transport, a set of nickel monosilicde (NiSi) nanolines with feature size down to 15 nm was fabricated. The linewidth effect on nickel silicide formation has been studied using high-resolution transmission electron microscopy (HRTEM) for microstructural analysis. Four point probe electrical measurements showed that the residual resistivity of the NiSi lines at cryogenic temperature increased with decreasing line width, indicating effect of increased electron sidewall scattering with decreased line width. A mean free path for electron transport at room temperature of 5 nm was deduced, which suggests that nickel silicide can be used without degradation of device performance in nanoscale electronics.
|
79 |
Dynamic mechanical behavior and high pressure phase stability of a zirconium-based bulk metallic glass and its composite with tungstenMartin, Morgana 04 March 2008 (has links)
An investigation of the high-strain-rate mechanical properties, deformation
mechanisms, and fracture characteristics of a Zr-based bulk metallic glass (BMG) and its composite with tungsten was conducted through the use of controlled impact experiments and constitutive modeling. The overall objective of this research was to determine the high-strain-rate deformation and failure mechanisms of a BMG and its composite as a function of stress state and strain rate, and
describe the mechanical behavior over a range of loading conditions. The research involved performing controlled impact experiments on BMG
composites consisting of an amorphous Zr57Nb5Cu15.4Ni12.6Al10 (LM106) with
crystalline tungsten reinforcement particles. Monolithic LM106 was also examined to aid in the understanding of the composite. The mechanical
behavior of the composite was investigated over a range of strain rates (10^3 s^-1 to 10^6 s^-1), stress states (compression, compression-shear,
tension), and temperatures (RT to 600 C) to determine the dependence of mechanical properties and deformation and failure modes (i.e., homogeneous deformation vs. inhomogeneous shear banding) on these parameters. Mechanical
testing in the quasi-static to intermediate strain rate regimes was performed using an Instron, Drop Weight Tower, and Split Hopkinson Pressure
Bar, respectively. High-strain-rate mechanical properties of the BMG-matrix composite and monolithic BMG were investigated using dynamic compression (reverse Taylor) and dynamic tension (spall) impact experiments performed using a gas gun instrumented with velocity interferometry and high-speed digital photography. These experiments provided information about dynamic strength and deformation modes, and allowed for validation of constitutive models via comparison of experimental and simulated transient deformation profiles and free surface velocity traces. Hugoniot equation of state measurements were performed on the monolithic BMG to investigate the high
pressure phase stability of the glass and the possible implications of a high pressure phase transformation on mechanical properties. Specimens were recovered for post-impact microstructural and thermal analysis to gain information about the mechanisms of dynamic deformation and fracture, and to examine for possible shock-induced phase transformations of the amorphous phase.
|
80 |
Development of a Ligno-Cellulosic Polymeric and Reinforced Sheet Molding Compound (SMC)Mills, Ryan Harris January 2009 (has links) (PDF)
No description available.
|
Page generated in 0.1057 seconds