• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 131
  • 43
  • 10
  • 7
  • 2
  • 1
  • Tagged with
  • 194
  • 88
  • 66
  • 59
  • 57
  • 49
  • 36
  • 34
  • 31
  • 30
  • 28
  • 25
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Active Chiral Processes in Soft Biological Matter / Aktive chirale Prozesse in Weicher biologischer Materie

Fürthauer, Sebastian 13 December 2012 (has links) (PDF)
Biological matter is driven far from thermodynamic equilibrium by active processes on the molecular scale. These processes are usually driven by the chemical reaction of a fuel and generate spontaneous movements and mechanical stresses in the system, even in the absence of external forces or torques. Moreover these active stresses effectively fluidify the material. The cell cytoskeleton, suspensions of swimming microorganisms or tissues are prominent examples of active fluids. Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological micro-swimmers. Moreover, large scale chiral flows have been observed in the cell cortex of C. elegans and Xenopus embryos. Active force generation induces force and torque dipoles in the material. If all forces are internal the total force and torque vanish as required by the conservation of momentum and angular momentum. The density of force dipoles is an active stress in the material. In addition, active chiral processes allow for the existence of active torque dipoles which enter the conservation of angular momentum and generate an active antisymmetric stress and active angular momentum fluxes. We developed a generic description of active fluids that takes into account active chiral processes and explicitly keeps track of spin and orbital angular momentum densities. We derived constitutive equations for an active chiral fluid based on identifying the entropy production rate from the rate of change of the free energy and linearly expanding thermodynamic fluxes in terms of thermodynamic forces. We identified four elementary chiral motors that correspond to localized distributions of chiral force and torque dipoles that differ by their symmetry and produce different chiral fluid flows and intrinsic rotation fields. We employ our theory to analyze different active chiral processes. We first show that chiral flows can occur spontaneously in an active fluid even in the absence of chiral processes. For this we investigate the Taylor-Couette motor, that is an active fluid confined between two concentric cylinders. For sufficiently high active stresses the fluid generates spontaneous rotations of the two cylinders with respect to each other thus breaking the chiral symmetry of the system spontaneously. We then investigate cases where active chiral processes on the molecular scale break the chiral symmetry of the whole system. We show that chiral flows occur in films of chiral motors and derive a generic theory for thin films of active fluids. We discuss our results in the context of carpets of beating cilia or E. coli swimming close to a surface. Finally, we discuss chiral flows that are observed in the cellular cortex of the nematode C. elegans at the one cell stage. Two distinct chiral flow events are observed. The first chiral flow event (i) is a screw like chiral rotation of the two cell halves with respect to each other and occurs around 15min after fertilization. This event coincides with the establishment of cortical cell polarity. The second chiral flow event (ii) is a chiral rotation of the entire cell cortex around the anterior posterior axis of the whole cell and occurs around 30min after fertilization. Measuring densities of molecular motors during episode (i) we fit the flow patterns observed using only two fit parameters: the hydrodynamic length and cortical chirality. The flows during (ii) can be understood assuming an increase of the hydrodynamic length. We hypothesize that the cell actively regulates the cortical viscosity and the friction of the cortex with the eggshell and cytosol. We show that active chiral processes in soft biological matter give rise to interesting new physics and are essential to understand the material properties of many biological systems, such as the cell cortex.
82

Active Chiral Processes in Soft Biological Matter

Fürthauer, Sebastian 15 May 2012 (has links)
Biological matter is driven far from thermodynamic equilibrium by active processes on the molecular scale. These processes are usually driven by the chemical reaction of a fuel and generate spontaneous movements and mechanical stresses in the system, even in the absence of external forces or torques. Moreover these active stresses effectively fluidify the material. The cell cytoskeleton, suspensions of swimming microorganisms or tissues are prominent examples of active fluids. Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological micro-swimmers. Moreover, large scale chiral flows have been observed in the cell cortex of C. elegans and Xenopus embryos. Active force generation induces force and torque dipoles in the material. If all forces are internal the total force and torque vanish as required by the conservation of momentum and angular momentum. The density of force dipoles is an active stress in the material. In addition, active chiral processes allow for the existence of active torque dipoles which enter the conservation of angular momentum and generate an active antisymmetric stress and active angular momentum fluxes. We developed a generic description of active fluids that takes into account active chiral processes and explicitly keeps track of spin and orbital angular momentum densities. We derived constitutive equations for an active chiral fluid based on identifying the entropy production rate from the rate of change of the free energy and linearly expanding thermodynamic fluxes in terms of thermodynamic forces. We identified four elementary chiral motors that correspond to localized distributions of chiral force and torque dipoles that differ by their symmetry and produce different chiral fluid flows and intrinsic rotation fields. We employ our theory to analyze different active chiral processes. We first show that chiral flows can occur spontaneously in an active fluid even in the absence of chiral processes. For this we investigate the Taylor-Couette motor, that is an active fluid confined between two concentric cylinders. For sufficiently high active stresses the fluid generates spontaneous rotations of the two cylinders with respect to each other thus breaking the chiral symmetry of the system spontaneously. We then investigate cases where active chiral processes on the molecular scale break the chiral symmetry of the whole system. We show that chiral flows occur in films of chiral motors and derive a generic theory for thin films of active fluids. We discuss our results in the context of carpets of beating cilia or E. coli swimming close to a surface. Finally, we discuss chiral flows that are observed in the cellular cortex of the nematode C. elegans at the one cell stage. Two distinct chiral flow events are observed. The first chiral flow event (i) is a screw like chiral rotation of the two cell halves with respect to each other and occurs around 15min after fertilization. This event coincides with the establishment of cortical cell polarity. The second chiral flow event (ii) is a chiral rotation of the entire cell cortex around the anterior posterior axis of the whole cell and occurs around 30min after fertilization. Measuring densities of molecular motors during episode (i) we fit the flow patterns observed using only two fit parameters: the hydrodynamic length and cortical chirality. The flows during (ii) can be understood assuming an increase of the hydrodynamic length. We hypothesize that the cell actively regulates the cortical viscosity and the friction of the cortex with the eggshell and cytosol. We show that active chiral processes in soft biological matter give rise to interesting new physics and are essential to understand the material properties of many biological systems, such as the cell cortex.
83

The relation between interstellar turbulence and star formation

Klessen, Ralf S. January 2004 (has links)
Eine der zentralen Fragestellungen der modernen Astrophysik ist es, unser Verständnis fuer die Bildung von Sternen und Sternhaufen in unserer Milchstrasse zu erweitern und zu vertiefen. Sterne entstehen in interstellaren Wolken aus molekularem Wasserstoffgas. In den vergangenen zwanzig bis dreißig Jahren ging man davon aus, dass der Prozess der Sternentstehung vor allem durch das Wechselspiel von gravitativer Anziehung und magnetischer Abstossung bestimmt ist. Neuere Erkenntnisse, sowohl von Seiten der Beobachtung als auch der Theorie, deuten darauf hin, dass nicht Magnetfelder, sondern Überschallturbulenz die Bildung von Sternen in galaktischen Molekülwolken bestimmt.<br /> <br /> Diese Arbeit fasst diese neuen Überlegungen zusammen, erweitert sie und formuliert eine neue Theorie der Sternentstehung die auf dem komplexen Wechselspiel von Eigengravitation des Wolkengases und der darin beobachteten Überschallturbulenz basiert. Die kinetische Energie des turbulenten Geschwindigkeitsfeldes ist typischerweise ausreichend, um interstellare Gaswolken auf großen Skalen gegen gravitative Kontraktion zu stabilisieren. Auf kleinen Skalen jedoch führt diese Turbulenz zu starken Dichtefluktuationen, wobei einige davon die lokale kritische Masse und Dichte für gravitativen Kollaps überschreiten koennen. Diese Regionen schockkomprimierten Gases sind es nun, aus denen sich die Sterne der Milchstrasse bilden. Die Effizienz und die Zeitskala der Sternentstehung hängt somit unmittelbar von den Eigenschaften der Turbulenz in interstellaren Gaswolken ab. Sterne bilden sich langsam und in Isolation, wenn der Widerstand des turbulenten Geschwindigkeitsfeldes gegen gravitativen Kollaps sehr stark ist. Überwiegt hingegen der Einfluss der Eigengravitation, dann bilden sich Sternen in dichten Gruppen oder Haufen sehr rasch und mit grosser Effizienz. <br /> <br /> Die Vorhersagungen dieser Theorie werden sowohl auf Skalen einzelner Sternentstehungsgebiete als auch auf Skalen der Scheibe unserer Milchstrasse als ganzes untersucht. Es zu erwarten, dass protostellare Kerne, d.h. die direkten Vorläufer von Sternen oder Doppelsternsystemen, eine hochgradig dynamische Zeitentwicklung aufweisen, und keineswegs quasi-statische Objekte sind, wie es in der Theorie der magnetisch moderierten Sternentstehung vorausgesetzt wird. So muss etwa die Massenanwachsrate junger Sterne starken zeitlichen Schwankungen unterworfen sein, was wiederum wichtige Konsequenzen für die statistische Verteilung der resultierenden Sternmassen hat. Auch auf galaktischen Skalen scheint die Wechselwirkung von Turbulenz und Gravitation maßgeblich. Der Prozess wird hier allerdings noch zusätzlich moduliert durch chemische Prozesse, die die Heizung und Kühlung des Gases bestimmen, und durch die differenzielle Rotation der galaktischen Scheibe. Als wichtigster Mechanismus zur Erzeugung der interstellaren Turbulenz lässt sich die Überlagerung vieler Supernova-Explosionen identifizieren, die das Sterben massiver Sterne begleiten und große Mengen an Energie und Impuls freisetzen. Insgesamt unterstützen die Beobachtungsbefunde auf allen Skalen das Bild der turbulenten, dynamischen Sternentstehung, so wie es in dieser Arbeit gezeichnet wird. / Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that the star formation process is primarily controlled by the interplay between gravity and magnetostatic support, modulated by neutral-ion drift. Recently, however, both observational and numerical work has begun to suggest that supersonic interstellar turbulence rather than magnetic fields controls star formation. <br /> <br /> This review begins with a historical overview of the successes and problems of both the classical dynamical theory of star formation, and the standard theory of magnetostatic support from both observational and theoretical perspectives. We then present the outline of a new paradigm of star formation based on the interplay between supersonic turbulence and self-gravity. Supersonic turbulence can provide support against gravitational collapse on global scales, while at the same time it produces localized density enhancements that allow for collapse on small scales. The efficiency and timescale of stellar birth in Galactic gas clouds strongly depend on the properties of the interstellar turbulent velocity field, with slow, inefficient, isolated star formation being a hallmark of turbulent support, and fast, efficient, clustered star formation occurring in its absence. <br /> <br /> After discussing in detail various theoretical aspects of supersonic turbulence in compressible self-gravitating gaseous media relevant for star forming interstellar clouds, we explore the consequences of the new theory for both local star formation and galactic scale star formation. The theory predicts that individual star-forming cores are likely not quasi-static objects, but dynamically evolving. Accretion onto these objects will vary with time and depend on the properties of the surrounding turbulent flow. This has important consequences for the resulting stellar mass function. Star formation on scales of galaxies as a whole is expected to be controlled by the balance between gravity and turbulence, just like star formation on scales of individual interstellar gas clouds, but may be modulated by additional effects like cooling and differential rotation. The dominant mechanism for driving interstellar turbulence in star-forming regions of galactic disks appears to be supernovae explosions. In the outer disk of our Milky Way or in low-surface brightness galaxies the coupling of rotation to the gas through magnetic fields or gravity may become important.
84

Messung kritischer Casimir-Kräfte mit TIRM

Hertlein, Johann Christopher, January 2008 (has links)
Stuttgart, Univ., Diss., 2008.
85

Untersuchung der Bildung, des Isotopenaustausches und der Isomerisierung des Ionensystem HCO + /HOC +

Richthofen, Jan von, January 2003 (has links)
Chemnitz, Techn. Univ., Diss., 2002.
86

Colloids as model systems for condensed matter investigation of structural and dynamical properties of colloidal systems using digital video microscopy and optical tweezers /

Baumgartl, Jörg, January 2007 (has links)
Stuttgart, Univ., Diss., 2007.
87

Dark and visible matter in spiral galaxies

Broeils, Arend Hendrik, January 1992 (has links)
Thesis (doctoral)--Rijksuniversiteit Groningen, 1992. / Summary in Dutch. Includes bibliographical references.
88

Mesonic and isobar modes in matter

Riek, Felix Christopher. Unknown Date (has links)
Techn. University, Diss., 2007--Darmstadt.
89

Zur Anatomie Schwarzer Löcher, das G-Boson, Dunkle Materie und Dunkle Energie: War beim Urknall einiges anders?

Reichelt, Uwe J. M. 16 February 2022 (has links)
Über bisherige Aussagen hinausgehend wird ein Weg vorgestellt, der Aussagen über kleinstmögliche Schwarze Löcher gestattet. Es erweist sich, dass es sie (theoretisch) gibt und das sie ein neues stabiles Elementarteilchen (in dieser Arbeit G-Boson genannt) darstellen, das Zusammenhänge zur Dunklen Materie aufzeigt und die Dunkle Energie unabhängig von ihrer in der Makroquantentheorie erforderlichen Existenz notwendig macht, um astronomische Beobachtungen zu erklären. Dadurch ergeben sich logische Abläufe beim Urknall, die diesen in einem etwas anderen Zusammenhang erscheinen lassen als bisher bekannt.:Inhaltsverzeichnis 1. Abstract 2. Einleitung 3. Vorbetrachtung anhand von Planck-Einheiten 4. Die Grenzkraft 5. Grenzkraft und Schwarze Löcher, das G-Boson 6. Eigenschaften des G-Bosons 7. Entstehung der G-Bosonen, die Dunkle Materie und Energie 8. Was bedeutet das für den Urknall? 9. Astronomische Befunde 10. Zusammenfassung
90

Ladungen, Wechselwirkungen und Teilchen

Kobel, M., Bilow, U., Lindenau, P., Schorn, B. 05 October 2021 (has links)
Die Frage, welche fundamentalen Prinzipien den Aufbau der Materie unseres Universums bestimmen und was sie „im Innersten zusammenhält“, ist seit jeher Gegenstand der Neugier und des Forschungsdrangs der Menschen. Das vorliegende Unterrichtsmaterial möchte Sie und Ihre Schüler in die faszinierende Welt der Teilchenphysik mitnehmen, um einige Antworten auf diese Frage zu finden. Die Inhalte lassen sich in Form eines Spiralcurriculums behandeln, so dass eine wiederkehrende Beschäftigung mit den grundlegenden Konzepten der Elementarteilchenphysik im Physikunterricht in differenzierter Form und Tiefe, in unterschiedlichem Umfang, auf sich steigerndem Niveau und auf der Grundlage unterschiedlicher Vorkenntnisse möglich ist. So können wesentliche Inhalte zu den zentralen Begriffen „Ladungen, Wechselwirkungen und Elementarteilchen“ vermittelt werden. Der Band wird durch Informationen für Lehrkräfte und Aufgaben mit Lösungen abgerundet.

Page generated in 0.0652 seconds