• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 276
  • 212
  • 46
  • 22
  • 17
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 642
  • 642
  • 322
  • 153
  • 123
  • 89
  • 88
  • 88
  • 83
  • 80
  • 61
  • 59
  • 51
  • 51
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Estruturas shrimp e propriedades dinâmicas no modelo dissipativo do acelerador de Fermi /

Oliveira, Amanda Prina de. January 2014 (has links)
Orientador: Edson Denis Leonel / Banca: Paulo Cesar Rech / Banca: Ricardo Egydio de Carvalho / Resumo: Neste trabalho investigamos algumas propriedades dinâmicas de dois modelos descritos por mapeamentos discretos: (i) mapa quadrático com perturbação paramétrica e; (ii) modelo do acelerador de Fermi concentrando particularmente na dinâmica dissipativa. No caso (i) e com a introdução de uma perturbação paramétrica o espaço de parâmetros é bidimensional permitindo assim um estudo de suas estruturas periódicas. Por outro lado o modelo do acelerador de Fermi descrito em (ii) consiste de uma particula clássica confinada entre duas paredes rígidas sendo uma delas fixa e outra movendo-se periodicamente no tempo. A partícula sofre colisões com ambas paredes, que assumiremos serem inelásticas. Isso implica em uma perda fracional de energia a cada choque. O são observadas nela. Mostramos que as estruturas periódicas presentes no espaço de parâmetros é bidimensional e estruturas periódicas também modelo do acelerador de Fermi obedecem a uma regra de organização descrita por uma equação diofantina / Abstract: Some dynamical properties are investigated in this work considering two models described by discret mappings: (i) a quadratic map under a parametric perturbation and; (ii) a Fermi accelerator model focusing particularly in the dissipative dynamics. In case (i) and with the introduction of a parametric perturbation the parameter space becomes two-dimensional allowing us to study periodic structures present in such space. On the other hand, the Fermi accelerator model described in case (ii), consists of a classical particle confined to bounce between two rigid walls. One of them is fixed and the other one is assumed to move periodically in time. Inelastic collisions are considered leading the particle to suffer a fractional loss of energy upon collision. The parameter space is also two-dimensional and periodic structures are observed. We show that the organization of such structures is described by a diophantine equation / Mestre
192

A study of divisors and algebras on a double cover of the affine plane

Unknown Date (has links)
An algebraic surface defined by an equation of the form z2 = (x+a1y) ... (x + any) (x - 1) is studied, from both an algebraic and geometric point of view. It is shown that the surface is rational and contains a singular point which is nonrational. The class group of Weil divisors is computed and the Brauer group of Azumaya algebras is studied. Viewing the surface as a cyclic cover of the affine plane, all of the terms in the cohomology sequence of Chase, Harrison and Roseberg are computed. / by Djordje Bulj. / Thesis (Ph.D.)--Florida Atlantic University, 2012. / Includes bibliography. / Mode of access: World Wide Web. / System requirements: Adobe Reader.
193

Nonlinear Phenomena from a Reinjected Horseshoe

Unknown Date (has links)
A geometric model of a reinjected cuspidal horseshoe is constructed, that resembles the standard horseshoe, but where the set of points that escape are now reinjected and contribute to richer dynamics. We show it is observed in the unfolding of a three-dimensional vector field possessing an inclination-flip homoclinic orbit with a resonant hyperbolic equilibrium. We use techniques from classical dynamical systems theory and rigorous computational symbolic dynamics with algebraic topology to show that for suitable parameters the flow contains a strange attractor. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
194

Spin-foam dynamics of general relativity

Unknown Date (has links)
In this dissertation the dynamics of general relativity is studied via the spin-foam approach to quantum gravity. Spin-foams are a proposal to compute a transition amplitude from a triangulated space-time manifold for the evolution of quantum 3d geometry via path integral. Any path integral formulation of a quantum theory has two important parts, the measure factor and a phase part. The correct measure factor is obtained by careful canonical analysis at the continuum level. The basic variables in the Plebanski-Holst formulation of gravity from which spin-foam is derived are a Lorentz connection and a Lorentz-algebra valued two-form, called the Plebanski two-form. However, in the final spin-foam sum, one usually sums over only spins and intertwiners, which label eigenstates of the Plebanski two-form alone. The spin-foam sum is therefore a discretized version of a Plebanski-Holst path integral in which only the Plebanski two-form appears, and in which the conne ction degrees of freedom have been integrated out. Calculating the measure factor for Plebanksi Holst formulation without the connection degrees of freedom is one of the aims of this dissertation. This analysis is at the continuum level and in order to be implemented in spin-foams one needs to properly discretize and quantize this measure factor. The correct phase is determined by semi-classical behavior. In asymptotic analysis of the Engle-Pereira-Rovelli-Livine spin-foam model, due to the inclusion of more than the usual gravitational sector, more than the usual Regge term appears in the asymptotics of the vertex amplitude. As a consequence, solutions to the classical equations of motion of GR fail to dominate in the semi-classical limit. One solution to this problem has been proposed in which one quantum mechanically imposes restriction to a single gravitational sector, yielding what has been called the “proper” spin-foam model. However, this revised model of quantum gravity, like any proposal for a theory of quantum gravity, must pass certain tests. In the regime of small curvature, one expects a given model of quantum gravity to reproduce the predictions of the linearized theory. As a consistency check we calculate the graviton two-point function predicted by the Lorentzian proper vertex and examine its semiclassical limit. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
195

Derivation of planar diffeomorphisms from Hamiltonians with a kick

Unknown Date (has links)
In this thesis we will discuss connections between Hamiltonian systems with a periodic kick and planar diffeomorphisms. After a brief overview of Hamiltonian theory we will focus, as an example, on derivations of the Hâenon map that can be obtained by considering kicked Hamiltonian systems. We will conclude with examples of Hâenon maps of interest. / by Zalmond C. Barney. / Thesis (M.S.)--Florida Atlantic University, 2011. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2011. Mode of access: World Wide Web.
196

Localização no espaço de de Sitter em 2 + 1 dimensões / Localization on the de Sitter Space in 2+1 Dimensions

Raszeja, Thiago Costa 09 December 2015 (has links)
A partir de uma versão análoga ao operador de Newton-Wigner construída para o espaço de de Sitter bidimensional, provamos que a noção de localização de Newton-Wigner também existe para o caso tridimensional. Identificamos o subespaço de uma partícula da teoria, gerado pelos modos positivos de energia da solução da equação de Klein-Gordon em coordenadas esféricas, com uma representação irredutível do grupo de de Sitter. Tais modos são compatíveis com o vácuo de Bunch-Davies e portanto eles satisfazem a condição de Hadamard. Generalizamos para 2+1 dimensões a versão de de Sitter dos postulados de localização de Newton-Wigner, considerando-se ambas as séries principal e complementar. A evolução temporal do operador de Newton-Wigner foi obtida explicitamente, e para a série complementar a evolução é trivial, i.e, não há dinâmica. Também discutimos heurísticamente a ambiguidade de sinais existente quando não exigimos como postulado que as funções de Newton-Wigner sejam proporcionais às suas respectivas soluções na representação das soluções da equação de Klein-Gordon. / From an analogue version of the Newton-Wigner operator built for the two-dimensional de Sitter space, we proved that the Newton-Wigner localization notion also exists for the three-dimensional case. We identified the one-particle subspace, generated by positive energy modes solution of the Klein-Gordon equation in spherical coordinates, with a irreducible representation of the de Sitter group. Such methods are compatible with the Bunch-Davies vacuum and thus satisfy the Hadamard condition. We generalized to 2+1 dimension the de Sitter version of the Newton-Wigner postulates considering both the principal and the complementary series. The time evolution of the Newton-Wigner operator was obtained explicitly and for the complementary series the evolution is trivial, i.e., there is no dynamics. Also we discussed heuristically the existing sign ambiguity when we do not require as postulate that the Newton-Wigner functions must be proportional to their respective solutions in the representation of solutions of the Klein-Gordon equation.
197

Séries de Lindstedt convergentes em sistemas periódicos e quase-periódicos / Lindstedt Series Interlocking Systems Periodic Quasi-periodic

Cortez, Daniel Augusto 23 June 2005 (has links)
Nesta tese, através de métodos perturbativos adequados, resultados rigorosos são obtidos para dois sistemas dinâmicos específicos. Primeiro, apresentamos uma investigação matemática do fenômeno de localização dinâmica em uma classe de sistemas de dois níveis periodicamente e quase-periodicamente dependente do tempo. Nossos resultados são baseados em um procedimento de eliminação iterativa de termos polinominais da série de Lindstedt, a qual é proposta como solução de uma certa equação de Riccati associada. Tal procedimento é desenvolvido aqui de uma forma sistemática para adequá-lo ao efeito de localização em qualquer ordem de perturbação. No caso quase-periódico esse procedimento nos leva apenas a uma série de Lindstedt formal bem definida. No caso periódico, uma solução perturbativa convergente é obtida e, em particular, uma expansão perturbativa convergente para a frequência secular é apresentada. O caso particular do campo monocromático é discutido em detalhes onde cômputos numéricos das soluções são apresentadas e os resultados são exibidos em termos de certas probabilidades de transição entre os dois auto-estados do sistema. Segundo, consideramos em uma equação de Hill perturbada da forma + (p IND.0(t) + p IND.1(t)) = 0 onde p IND.0 é real analítica e periódica, p IND.1 é real analítica quase-periódica e R é pequeno. Assumindo condições Diophantinas nas frequências do sistema desacoplado, i.e., as frequências dos potenciais externos p IND.0 e p IND.1 e a frequência própria da equação de Hill não-perturbado (=0), e assumindo apenas uma condição de não-degenerescência específica sobre o potencial perturbador p IND.1, provamos que soluções quase-periódicas da equação não-pertrubada são estáveis se estiver em um conjunto de Cantor de medida relativamente grande em [- IND.0. IND.0] C R, onde IND.0 é pequeno o suficiente. Nosso método é baseado em um procedimento de resoma da série de Lindstedt formal obtida como solução de uma equação de Riccati associada ao problema de Hill. Finalmente, salientamos que os sistemas acima são matematicamente aparentados. De fato, ambos passam pela solução de certas equações de Riccati bastante parecidas. Tais soluções são procuradas em termos de séries de Lindstedt expandidas em um parâmetro pertrubativo adequado. / In this thesis, through the use of suitable perturbative methods, rigorous results are obtained for two specific dynamical systems. First, we present a mathematical investigation of the phenomenon of dynamical localization in a class of quasi-periodically and periodically time-dependent two-level systems. Our results are based on an interative procedure of elimination of polynomial terms from the Lindstedt series, which is proposed as a solution of a certain associated Riccati equation. Such a procedure is developed here in a systematic way in order to adapt it to the effect of localization in any perturbative order. In the quasi-periodic case, this procedure leads only to a formal well defined Lindstedt series. In the periodic case, a convergent perturbative solution is obtained and, in particular, a convergent perturbative expansion for the secular frequency is presented. The particular case of a monochromatic field is discussed in detail, where numerical computations of the solutions are presented and results are exhibited in terms of certain transition probabilities between the two eigenstates of the system. Second, we consider a perturbed Hill\'s equation of the form + (p0(t) + p1(t)) = 0, where p0 is real analytic and periodic, p1 is real analytic and quasi-periodic and R is small. Assuming Diophantine conditions on the frequencies of the decoupled system i.e., thr frequencies of the external potentials p0nd p1 and the proper frequency of the unperturbed ( = 0) Hills equation and making only one specific non-degeneracy assumption on the perturbating potential p1, we prove that quasi-periodic solutions of the unperturbed equation are stable if lies in a Cantor set of relatively large measure in [-0,0] C R where 0 is small enough. Our method is based on a resummation procedure of a formal Lindstedt series obtained as a solution of a genrelized Riccati equation associated to Hills problem. Finally, we stress that the two systems above are mathematically related. Indeed, both pass through the solutions of certain strongly related Riccati euqations. Such solutions are scarched in terms of Lindstedt series expandend in a suitable pertrubative parameter.
198

Parametrizações otimais de trajetórias adiabáticas em sistemas quânticos dissipativos / Otimais Settings for adiabatic trajectories in dissipative quantum systems

Gontijo, Marcela Muniz 20 April 2012 (has links)
Sistemas quânticos cuja dinâmica é não-unitária e que evoluem adiabaticamente apresentam características únicas com aplicações no campo da computação quântica. Estudamos nessa dissertação o formalismo de sistemas quânticos abertos, a teoria de semigrupos dinâmicos e os chamados operadores de Lindblad. Enunciamos e provamos o teorema adiabático na formulação de T. Kato a fim de entender a idéia e o formalismo por trás de regimes adiabáticos. Utilizamos essas ferramentas para descrever o problema de otimização de trajetórias adiabáticas em sistemas quânticos dissipativos (cuja dinâmica é dada por uma classe de operadores de Lindblad) e, seguindo as indicações de Avron et al. [8], obtemos as condições para que essa otimização seja única e aplicamos esse resultado em algoritmos quânticos de busca. / Quantum systems whose dynamics is non-unitary and develop adiabatically exhibit unique characteristics with applications in the field of quantum computing. We study in this dissertation formalism of open quantum systems, the theory of dynamical semigroups and called Lindblad operators. We state and prove the adiabatic theorem in Kato T. formulation in order to understand the idea and the formalism behind adiabatic regimes. We use these tools to describe the adiabatic trajectory optimization problem in dissipative quantum systems (whose dynamics is given by a Lindblad operator class) and following the advice of Avron et al. [8], we obtain the conditions for this optimization is unique and apply this result in search of quantum algorithms.
199

Quadratic scalar-tensor gravity

Davies, Trevor Bamidelé January 2017 (has links)
This thesis develops novel analytic models of scalar-tensor theories with quadratic coupling. In this framework, the coupling strength between scalar and matter is regulated in a way that allows the vacuum expectation value to vanish for low matter densities while becoming non-vanishingly large in the high-density regime. This results in significant deviations from the predictions of General Relativity in the strong-gravity regime. In astrophysics, we addressed the core-collapse supernova problem to account for the apparently missing energy required to explain the observed powerful explosions. We assumed a small, massless scalar gravitational field, thus allowing General Relativity to be recovered in the weak-gravity asymptotic limit. The non-trivial effects coming from the coupling function in the presence of a high-density field were analyzed at the instant of neutron star formation. Our results show that the scalar gravitational field evolves from a cosmological value to a new equilibrium via a Higgs-like mechanism. Additionally, the calculations associated with the gravitational binding energy shift and relevant relaxation timescale are explicitly shown. The full theory space of the model was also investigated for positive values of the coupling parameter. We studied a mechanism to address the stalled shock issue in core-collapse scenarios, which involved the application of sufficiently large positive values to the coupling parameter. Our results show that pulsating neutron stars act like optical cavities in which resonant scalar waves are parametrically amplified. It implies that the surface of a neutron star acts like an anti-phase reflector, releasing traveling scalar gravitational waves similar to an optical laser. In cosmology, the same framework was applied to a generic Friedman-Robertson-Walker universe involving general metric coupling and scalar potential functions. In cosmology, the same framework was applied to a generic Friedman-Robertson-Walker universe involving general metric coupling and scalar potential functions. We developed a mechanism which allowed the scalar field to be dynamically trapped, thus generating a potential capable of driving primordial inflation. Our results show that a trapped scalar field produces non-trivial dynamical consequences when applied to standard cosmology. Additionally, our analytic solutions for the generic inflationary behaviour, produce acceptable duration and e-foldings, thus recovering the Hubble parameter which is consistent with the present-day value. A feature of our cosmological model is that the universe can undergo several accelerating or decelerating phases, even though the scalar potential and metric coupling are monotonic functions overall. As this is important for the current dark energy problem, the quasi-static motion of the gravitational field induced by the scalar potential in the early universe, is investigated for a small value of the scalar field with normalized metric at the present time. Our results show that a variable Lambda Cold Dark Matter universe emerges naturally from the quadratic model.
200

Localização no espaço de de Sitter em 2 + 1 dimensões / Localization on the de Sitter Space in 2+1 Dimensions

Thiago Costa Raszeja 09 December 2015 (has links)
A partir de uma versão análoga ao operador de Newton-Wigner construída para o espaço de de Sitter bidimensional, provamos que a noção de localização de Newton-Wigner também existe para o caso tridimensional. Identificamos o subespaço de uma partícula da teoria, gerado pelos modos positivos de energia da solução da equação de Klein-Gordon em coordenadas esféricas, com uma representação irredutível do grupo de de Sitter. Tais modos são compatíveis com o vácuo de Bunch-Davies e portanto eles satisfazem a condição de Hadamard. Generalizamos para 2+1 dimensões a versão de de Sitter dos postulados de localização de Newton-Wigner, considerando-se ambas as séries principal e complementar. A evolução temporal do operador de Newton-Wigner foi obtida explicitamente, e para a série complementar a evolução é trivial, i.e, não há dinâmica. Também discutimos heurísticamente a ambiguidade de sinais existente quando não exigimos como postulado que as funções de Newton-Wigner sejam proporcionais às suas respectivas soluções na representação das soluções da equação de Klein-Gordon. / From an analogue version of the Newton-Wigner operator built for the two-dimensional de Sitter space, we proved that the Newton-Wigner localization notion also exists for the three-dimensional case. We identified the one-particle subspace, generated by positive energy modes solution of the Klein-Gordon equation in spherical coordinates, with a irreducible representation of the de Sitter group. Such methods are compatible with the Bunch-Davies vacuum and thus satisfy the Hadamard condition. We generalized to 2+1 dimension the de Sitter version of the Newton-Wigner postulates considering both the principal and the complementary series. The time evolution of the Newton-Wigner operator was obtained explicitly and for the complementary series the evolution is trivial, i.e., there is no dynamics. Also we discussed heuristically the existing sign ambiguity when we do not require as postulate that the Newton-Wigner functions must be proportional to their respective solutions in the representation of solutions of the Klein-Gordon equation.

Page generated in 0.0609 seconds