• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 9
  • 1
  • Tagged with
  • 23
  • 23
  • 11
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inférence statistique pour l'optimisation stochastique : applications en finance et en gestion de production

Guigues, Vincent 30 June 2005 (has links) (PDF)
L'objet de cette thèse est de modéliser et analyser des problèmes d'optimisation stochastique et de proposer des méthodes de résolution pour ces problèmes.<br />Dans une première partie, on considère des problèmes d'allocation d'actifs se formulant comme des problèmes d'optimisation convexes. La fonction coût et les contraintes dépendent d'un paramètre multidimensionnel inconnu. On montre, sous l'hypothèse d'homogénéité temporelle locale pour le processus des rendements, que l'on peut construire des approximations du problème original se servant d'une estimation adaptative du paramètre inconnu. La précision du problème approché est fournie. Cette méthode a été appliquée sur les problèmes VaR et de Markowitz et l'on présente les résultats de simulations numériques sur des données réelles et simulées. On propose ensuite une analyse de sensibilité pour une classe de problèmes quadratiques dont on déduit une analyse de sensibilité du problème de Markowitz. Pour ce problème, on propose alors une calibration stable de la matrice de covariance et des contreparties robustes. <br />La deuxième partie porte sur l'analyse de problèmes de gestion de production et en particulier le problème de gestion de production électrique. Nous proposons de nouvelles modélisations pour ce problème et des moyens pour les mettre en oeuvre. L'un des modèles conduit à une résolution par décomposition par les prix. Dans ce cas, on montre comment calculer la fonction duale par programmation dynamique. On explique enfin comment dans chaque cas, une stratégie de gestion est mise en place. Les différentes méthodes de gestion sont comparées sur des données réelles et simulées.
2

Amélioration des données neutroniques de diffusion thermique et épithermique pour l'interprétation des mesures intégrales / Improvement of thermal and epithermal neutron scattering data for the integral measurements interpretation

Scotta, Juan Pablo 26 September 2017 (has links)
Dans ces travaux de thèse, la diffusion thermique des neutrons pour l’application aux réacteurs à eau légère a été étudiée. Le modèle de loi de diffusion thermique de l’hydrogène lié à la molécule d’eau de la bibliothèque de données nucléaires JEFF-3.1.1 est basée sur des mesures expérimentales réalisées dans les années soixante. La physique de diffusion de neutrons de cette bibliothèque a été comparée à un modèle basé sur les calculs de dynamique moléculaire développé au Centre Atomique de Bariloche (Argentine), à savoir le modèle CAB. L’impact de ces modèles a également été évalué sur le programme expérimental MISTRAL (configurations UOX et MOX) réalisé dans le réacteur de puissance nulle EOLE situé au CEA Cadarache (France). La contribution de la diffusion thermique des neutrons sur l’hydrogène dans l’eau a été quantifiée sur le calcul de la réactivité et sur l’erreur de calcul du coefficient de température isotherme (reactivity temperature Coefficient en anglais - RTC).Pour le réseau UOX, l’écart entre la réactivité calculée à 20 °C avec le modèle CAB et celle du JEFF-3.1.1 est de +90 pcm, tandis que pour le réseau MOX, il est de +170 pcm à cause de la sensibilité élevée de la diffusion thermique pour ce type de combustible. Dans la plage de température de 10 °C à 80 °C, l’erreur de calcul sur le RTC est de -0.27 ± 0.3 pcm/°C avec JEFF-3.1.1 et de +0.05 ± 0.3 pcm/°C avec le modèle CAB pour le réseau UOX. Pour la configuration MOX, il est de -0.98 ± 0.3 pcm/°C et -0.72 ± 0.3 pcm/°C obtenu respectivement avec la bibliothèque JEFF-3.1.1 et avec le modèle CAB. Les résultats montrent l’apport du modèle CAB dans le calcul de ce paramètre de sureté. / In the present report it was studied the neutron thermal scattering of light water for reactors application. The thermal scattering law model of hydrogen bounded to the water molecule of the JEFF-3.1.1 nuclear data library is based on experimental measures performed in the sixties. The scattering physics of this latter was compared with a model based on molecular dynamics calculations developed at the Atomic Center in Bariloche (Argentina), namely the CAB model. The impact of these models was evaluated as well on reactor calculations at cold conditions. The selected benchmark was the MISTRAL program (UOX and MOX configurations), carried out in the zero power reactor EOLE of CEA Cadarache (France). The contribution of the neutron thermal scattering of hydrogen in water was quantified in terms of the difference in the calculated reactivity and the calculation error on the isothermal reactivity temperature coefficient (RTC). For the UOX lattice, the calculated reactivity with the CAB model at 20 °C is +90 pcm larger than JEFF-3.1.1, while for the MOX lattice is +170 pcm because of the high sensitivity of thermal scattering to this type of fuels. In the temperature range from 10 °C to 80 °C, the calculation error on the RTC is -0.27 ± 0.3 pcm/°C and +0.05 ± 0.3 pcm/°C obtained with JEFF-3.1.1 and the CAB model respectively (UOX lattice). For the MOX lattice, is -0.98 ± 0.3 pcm/°C and -0.72 ± 0.3 pcm/°C obtained with the JEFF-3.1.1 library and with the CAB model respectively. The results illustrate the improvement of the CAB model in the calculation of this safety parameter.
3

Robust classifcation methods on the space of covariance matrices. : application to texture and polarimetric synthetic aperture radar image classification / Classification robuste sur l'espace des matrices de covariance : application à la texture et aux images de télédétection polarimétriques radar à ouverture synthétique

Ilea, Ioana 26 January 2017 (has links)
Au cours de ces dernières années, les matrices de covariance ont montré leur intérêt dans de nombreuses applications en traitement du signal et de l'image.Les travaux présentés dans cette thèse se concentrent sur l'utilisation de ces matrices comme descripteurs pour la classification. Dans ce contexte, des algorithmes robustes de classification sont proposés en développant les aspects suivants.Tout d'abord, des estimateurs robustes de la matrice de covariance sont utilisés afin de réduire l'impact des observations aberrantes. Puis, les distributions Riemannienne Gaussienne et de Laplace, ainsi que leur extension au cas des modèles de mélange, sont considérés pour la modélisation des matrices de covariance.Les algorithmes de type k-moyennes et d'espérance-maximisation sont étendus au cas Riemannien pour l'estimation de paramètres de ces lois : poids, centroïdes et paramètres de dispersion. De plus, un nouvel estimateur du centroïde est proposé en s'appuyant sur la théorie des M-estimateurs : l'estimateur de Huber. En outre,des descripteurs appelés vecteurs Riemannien de Fisher sont introduits afin de modéliser les images non-stationnaires. Enfin, un test d'hypothèse basé sur la distance géodésique est introduit pour réguler la probabilité de fausse alarme du classifieur.Toutes ces contributions sont validées en classification d'images de texture, de signaux du cerveau, et d'images polarimétriques radar simulées et réelles. / In the recent years, covariance matrices have demonstrated their interestin a wide variety of applications in signal and image processing. The workpresented in this thesis focuses on the use of covariance matrices as signatures forrobust classification. In this context, a robust classification workflow is proposed,resulting in the following contributions.First, robust covariance matrix estimators are used to reduce the impact of outlierobservations, during the estimation process. Second, the Riemannian Gaussianand Laplace distributions as well as their mixture model are considered to representthe observed covariance matrices. The k-means and expectation maximization algorithmsare then extended to the Riemannian case to estimate their parameters, thatare the mixture's weight, the central covariance matrix and the dispersion. Next,a new centroid estimator, called the Huber's centroid, is introduced based on thetheory of M-estimators. Further on, a new local descriptor named the RiemannianFisher vector is introduced to model non-stationary images. Moreover, a statisticalhypothesis test is introduced based on the geodesic distance to regulate the classification false alarm rate. In the end, the proposed methods are evaluated in thecontext of texture image classification, brain decoding, simulated and real PolSARimage classification.
4

Localisation à haute résolution de cibles lentes et de petite taille à l’aide de radars de sol hautement ambigus / High resolution localization of small and slow-moving targets with highly ambiguous ground-based radars

Hadded Aouchiche, Linda 14 March 2018 (has links)
Cette thèse a pour objectif d’améliorer la détection de cibles lentes et de faible réflectivité dans le cas de radars de sol Doppler pulsés à fréquence de récurrence intermédiaire. Ces radars, hautement ambigus en distance et en vitesse, émettent de façon consécutive des trains d’impulsions de périodes de récurrence différentes, afin de lever les ambiguïtés.L’émission successive de trains d’impulsions de courtes durées conduit à une faible capacité de séparation sur l’axe Doppler. Par conséquent, les objets lents de faible réflectivité, comme les drones, sont difficiles à distinguer du fouillis de sol. A l’issue du traitement Doppler conventionnel qui vise à éliminer les échos de fouillis, les performances de détection de ces cibles sont fortement atténuées. Pour palier à ce problème, nous avons développé une nouvelle chaîne de traitement 2D distance/Doppler pour les radars à fréquence de récurrence intermédiaire. Celle-ci s’appuie, en premier lieu, sur un algorithme itératif permettant d’exploiter la diversité temporelle entre les trains d’impulsions émis, afin de lever les ambiguïtés en distance et en vitesse et de détecter les cibles rapides exo-fouillis. La détection des cibles lentes endo-fouillis est ensuite réalisée à l’aide d’un détecteur adaptatif. Une nouvelle approche, permettant d’associer les signaux issus de rafales de caractéristiques différentes pour l’estimation de la matrice de covariance, est utilisée en vue d’optimiser les performances de détection. Les différents tests effectués sur données simulées et réelles pour évaluer les traitements développés et la nouvelle chaîne de traitement, ont montré l’intérêt de ces derniers. / The aim of this thesis is to enhance the detection of slow-moving targets with low reflectivity in case of ground-based pulse Doppler radars operating in intermediate pulse repetition frequency. These radars are highly ambiguous in range and Doppler. To resolve ambiguities, they transmit successively short pulse trains with different pulse repetition intervals. The transmission of short pulse trains results in a poor Doppler resolution. As consequence, slow-moving targets with low reflectivity, such as unmanned aerial vehicles, are buried into clutter returns. One of the main drawbacks of the classical Doppler processing of intermediate pulse repetition frequency pulse Doppler radars is the low detection performance of small and slowly-moving targets after ground clutter rejection. In order to address this problem, a two-dimensional range / Dopper processing chain including new techniques is proposed in this thesis. First, an iterative algorithm allows to exploit transmitted pulse trains temporal diversity to resolve range and Doppler ambiguities and detect fast, exo-clutter, targets. The detection of slow, endo-clutter, targets is then performed by an adaptive detection scheme. It uses a new covariance matrix estimation approach allowing the association of pulse trains with different characteristics in order to enhance detection performance. The different tests performed on simulated and real data to evaluate the proposed techniques and the new processing chain have shown their effectiveness.
5

Planification du placement de caméras pour des mesures 3D de précision

Olague, Gustavo 26 October 1998 (has links) (PDF)
Les mesures tridimensionnelles peuvent être obtenues à partir de plusieurs images par la méthode de triangulation. Ce travail étudie le problème du placement des caméras de façon a obtenir une erreur minimale lors des mesures tridimensionnelles. En photogrammétrie, on parlera du concept du réseau de caméras. Nous poserons le problème en termes d'optimisation et nous le diviserons en deux parties: 1) Une partie analytique dédiée à l'analyse de l'erreur de propagation d'où découlera un critère. 2) Un processus global d'optimisation minimisera ce critère. De ce coté-là, l'approche consiste en une analyse d'incertitude appliquée au processus de reconstruction d'où une matrice de covariance sera calculée. Cette matrice représente l'incertitude de la détection pour lequel le critère est dérivé. Par ailleurs, l'optimisation a des aspects discontinus essentiellement dû à l'inobservabilité des points. Ce facteur va nous amener à utiliser un processus d'optimisation combinatoire que nous avons résolu en utilisant un algorithme génétique multicellulaire. Des résultats expérimentaux sont inclus pour illustrer l'efficacité et la rapidité de la solution.
6

Détection et Estimation en Environnement non Gaussien

Pascal, Frédéric 04 December 2006 (has links) (PDF)
Dans le contexte très général de la détection radar, les détecteurs classiques, basés sur l'hypothèse d'un bruit Gaussien, sont souvent mis en défaut dès lors que l'environnement (fouillis de sol, de mer) devient inhomogène, voire impulsionnel, s'écartant très vite du modèle Gaussien. Des modèles physiques de fouillis basés sur les modèles de bruit composé (SIRP, Compound Gaussian Processes) permettent de mieux représenter la réalité (variations spatiales de puissance et nature de fouillis, transitions, ...). Ces modèles dépendent cependant de paramètres (matrice de covariance, loi de texture, paramètres de "disturbance") qu'il devient nécessaire d'estimer. Une fois ces paramètres estimés, il est possible de construire des détecteurs radar optimaux (Generalized Likelihood Ratio Test - Linear Quadratic) pour ces environnements. Cette thèse, qui s'appuie sur ces modèles, propose une analyse complète de diverses procédures d'estimation de matrices de covariance, associées à ce problème de détection. Une étude statistique des principaux estimateurs de matrice de covariance, utilisés actuellement, est réalisée. De plus, un nouvel estimateur est proposé: l'estimateur du point fixe, très attractif grâce à ses bonnes propriétés statistiques et "radaristiques".<br />Elle décrit également les performances et les propriétés théoriques (SIRV-CFAR) du détecteur GLRT-LQ construits avec ces nouveaux estimateurs. En particulier, on montre l'invariance du détecteur à la loi de la texture mais également à la matrice de covariance régissant les propriétés spectrales du fouillis. Ces nouveaux détecteurs sont ensuite analysés sur des données simulées mais également testés sur des données réelles de fouillis de sol.
7

Contribution à la reconnaissance/authentification de visages 2D/3D / Contribution to 2D/3D face recognition/authentification

Hariri, Walid 13 November 2017 (has links)
L’analyse de visages 3D y compris la reconnaissance des visages et des expressions faciales 3D est devenue un domaine actif de recherche ces dernières années. Plusieurs méthodes ont été développées en utilisant des images 2D pour traiter ces problèmes. Cependant, ces méthodes présentent un certain nombre de limitations dépendantes à l’orientation du visage, à l’éclairage, à l’expression faciale, et aux occultations. Récemment, le développement des capteurs d’acquisition 3D a fait que les données 3D deviennent de plus en plus disponibles. Ces données 3D sont relativement invariables à l’illumination et à la pose, mais elles restent sensibles à la variation de l’expression. L’objectif principal de cette thèse est de proposer de nouvelles techniques de reconnaissance/vérification de visages et de reconnaissance d’expressions faciales 3D. Tout d’abord, une méthode de reconnaissance de visages en utilisant des matrices de covariance comme des descripteurs de régions de visages est proposée. Notre méthode comprend les étapes suivantes : le prétraitement et l’alignement de visages, un échantillonnage uniforme est ensuite appliqué sur la surface faciale pour localiser un ensemble de points de caractéristiques. Autours de chaque point, nous extrayons une matrice de covariance comme un descripteur de région du visage. Deux méthodes d’appariement sont ainsi proposées, et différentes distances (géodésiques / non-géodésique) sont appliquées pour comparer les visages. La méthode proposée est évaluée sur troisbases de visages GAVAB, FRGCv2 et BU-3DFE. Une description hiérarchique en utilisant trois niveaux de covariances est ensuite proposée et validée. La deuxième partie de cette thèse porte sur la reconnaissance des expressions faciales 3D. Pour ce faire, nous avons proposé d’utiliser les matrices de covariances avec les méthodes noyau. Dans cette contribution, nous avons appliqué le noyau de Gauss pour transformer les matrices de covariances en espace d’Hilbert. Cela permet d’utiliser les algorithmes qui sont déjà implémentés pour l’espace Euclidean (i.e. SVM) dans cet espace non-linéaire. Des expérimentations sont alors entreprises sur deux bases d’expressions faciales 3D (BU-3DFE et Bosphorus) pour reconnaître les six expressions faciales prototypiques. / 3D face analysis including 3D face recognition and 3D Facial expression recognition has become a very active area of research in recent years. Various methods using 2D image analysis have been presented to tackle these problems. 2D image-based methods are inherently limited by variability in imaging factors such as illumination and pose. The recent development of 3D acquisition sensors has made 3D data more and more available. Such data is relatively invariant to illumination and pose, but it is still sensitive to expression variation. The principal objective of this thesis is to propose efficient methods for 3D face recognition/verification and 3D facial expression recognition. First, a new covariance based method for 3D face recognition is presented. Our method includes the following steps : first 3D facial surface is preprocessed and aligned. A uniform sampling is then applied to localize a set of feature points, around each point, we extract a matrix as local region descriptor. Two matching strategies are then proposed, and various distances (geodesic and non-geodesic) are applied to compare faces. The proposed method is assessed on three datasetsincluding GAVAB, FRGCv2 and BU-3DFE. A hierarchical description using three levels of covariances is then proposed and validated. In the second part of this thesis, we present an efficient approach for 3D facial expression recognition using kernel methods with covariance matrices. In this contribution, we propose to use Gaussian kernel which maps covariance matrices into a high dimensional Hilbert space. This enables to use conventional algorithms developed for Euclidean valued data such as SVM on such non-linear valued data. The proposed method have been assessed on two known datasets including BU-3DFE and Bosphorus datasets to recognize the six prototypical expressions.
8

Grandes déviations pour des modèles de percolation dirigée et des matrices aléatoires.

Ibrahim, Jean-Paul 30 November 2010 (has links) (PDF)
Durant cette thèse, on a étudié essentiellement deux modèles aléatoires qui, malgré leur différence apparente, cachent un intérêt commun et mettent en évidence des phénomènes mathématiques et physiques communs. Le modèle de percolation de dernier passage dans le plan (last-passage directed percolation model ou LPP) est un modèle de percolation orientée bidimensionnel. Il fait partie d'une vaste liste de modèles de croissance et sert à modéliser des phénomènes dans des domaines variés. Dans la première partie de cette thèse, on s'est intéressé essentiellement aux propriétés de grandes déviations de ce modèle. On a également examiné les fluctuations transversales du même modèle. Toute cette étude a été faite dans le cadre d'un rectangle fin. Parallèlement aux travaux sur les modèles de croissance, on a étudié un autre sujet qui émerge également du monde de la Physique : celui des matrices aléatoires. Ces matrices se divisent en deux catégories principales introduites à une vingtaine d'années d'intervalle : les matrices de covariance empirique et les matrices de Wigner. L'étendue du champ d'application de ces matrices est tellement vaste qu'on peut les rencontrer presque dans toutes les filières scientifiques : probabilité, combinatoire, physique atomique, statistique multivariée, télécommunication théorie des représentations, etc. Parmi les objets mathématiques les plus étudiés, on cite la loi jointe des valeurs propres, la densité spectrale, l'espacement des valeurs propres, la plus grande valeur propre et les vecteurs propres associés. En mécanique quantique par exemple, les valeurs propres d'une matrice du GUE modélisent les niveaux d'énergie d'un électron autour du noyau tandis que le vecteur propre associé à la plus grande valeur propre d'une matrice de covariance empirique indique la direction ou l'axe principal en analyse de données. Comme pour le modèle de percolation dirigée, on s'est intéressé en particulier aux propriétés de grandes déviations de la valeur propre maximale d'un certain type de matrices de covariance empirique. Cette étude pourrait avoir des applications en statistique et notamment en analyse en composantes principales. Malgré l'apparente différence, la théorie des matrices aléatoires est strictement liée au modèle de percolation dirigée. Leurs structures de corrélation se ressemblent dans certains cas d'une manière troublante. La convergence des fluctuations, dans les deux cas, vers la célèbre loi de Tracy-Widom en est un bon exemple.
9

Génération et caractérisation d'états intriqués en variables continues

Keller, Gaëlle 19 February 2008 (has links) (PDF)
Cette thèse est consacrée à l'étude expérimentale et théorique des corrélations quantiques en variables continues.<br />La question de la caractérisation de ces corrélations est largement abordée, en particulier dans le cas des états gaussiens. Le formalisme mathématique des matrices de covariance, particulièrement adapté à cette étude, est développé ; et les différents critères existants sont répertoriés.<br />Ces critères permettent de caractériser le degré d'intrication des faisceaux générés par le dispositif expérimental au cœur de cette thèse : un Oscillateur Paramétrique Optique auto-verrouillé en phase. Au-dessous du seuil, les faisceaux, de valeur moyenne nulle, présentent une séparabilité de 0,33. Le système viole de manière apparente l'inégalité de Heisenberg de 58%. Au-dessus du seuil, les faisceaux brillants obtenus sont également fortement non classiques : la séparabilité vaut 0,76 et l'inégalité de Heisenberg est violée en apparence de 24%.<br />Une application originale de ce dispositif est proposée : il est montré théoriquement qu'un OPO à deux cristaux auto-verrouillé en phase génère deux faisceaux intriqués en polarisation, ce qui devrait faciliter le transfert de l'intrication de la lumière à la matière.
10

Chaos multiplicatif Gaussien, matrices aléatoires et applications / The theory of Gaussian multiplicative chaos

Allez, Romain 23 November 2012 (has links)
Dans ce travail, nous nous sommes intéressés d'une part à la théorie du chaos multiplicatif Gaussien introduite par Kahane en 1985 et d'autre part à la théorie des matrices aléatoires dont les pionniers sont Wigner, Wishart et Dyson. La première partie de ce manuscrit contient une brève introduction à ces deux théories ainsi que les contributions personnelles de ce manuscrit expliquées rapidement. Les parties suivantes contiennent les textes des articles publiés [1], [2], [3], [4], [5] et pré-publiés [6], [7], [8] sur ces résultats dans lesquels le lecteur pourra trouver des développements plus détaillés / In this thesis, we are interested on the one hand in the theory of Gaussian multiplicative chaos introduced by Kahane in 1985 and on the other hand in random matrix theory whose pioneers are Wigner, Wishart and Dyson. The first part of this manuscript constitutes a brief introduction to those two theories and also contains the personal contributions of this work rapidly explained. The following parts contain the texts of the published articles [1], [2], [3], [4], [5] and pre-prints [6], [7], [8] on those results where the reader can find more detailed developments

Page generated in 0.1007 seconds