• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 753
  • 245
  • 165
  • 53
  • 49
  • 24
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 12
  • 10
  • 8
  • Tagged with
  • 1482
  • 204
  • 183
  • 154
  • 131
  • 127
  • 127
  • 121
  • 108
  • 90
  • 82
  • 75
  • 73
  • 69
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

Extended Information Matrices for Optimal Designs when the Observations are Correlated

Pazman, Andrej, Müller, Werner January 1996 (has links) (PDF)
Regression models with correlated errors lead to nonadditivity of the information matrix. This makes the usual approach of design optimization (approximation with a continuous design, application of an equivalence theorem, numerical calculations by a gradient algorithm) impossible. A method is presented that allows the construction of a gradient algorithm by altering the information matrices through adding of supplementary noise. A heuristic is formulated to circumvent the nonconvexity problem and the method is applied to typical examples from the literature. (author's abstract) / Series: Forschungsberichte / Institut für Statistik
502

Multi-Port RF MEMS Switches and Switch Matrices

Daneshmand, Mojgan January 2006 (has links)
Microwave and millimeter wave switch matrices are essential components in telecommunication systems. These matrices enhance satellite capacity by providing full and flexible interconnectivity between the received and transmitted signals and facilitate optimum utilization of system bandwidth. Waveguide and semiconductor technology are two prominent candidates for the realizing such types of switch matrices. Waveguide switches are dominant in high frequency applications of 100 ? 200 GHz and in high power satellite communication. However, their heavy and bulky profile reinforces the need for a replacement. In some applications, semiconductor switches are an alternative to mechanical waveguide switches and utilize PIN diodes to create the ON and OFF states. Although, these switches are small in size, they exhibit poor RF performance and low power handling. <br /><br /> RF MEMS technology is a good candidate to replace the conventional switches and to realize an entire switch matrix. This technology has a great potential to offer superior RF performance with miniaturized dimensions. Because of the advantages of MEMS technology numerous research studies have been devoted to develop RF MEMS switches. However, they are mostly concentrated on Single-Pole Single-Throw (SPST) configurations and very limited work has been performed on MEMS multi-port switches and switch matrices. Here, this research has been dedicated on developing multi-port RF MEMS switches and amenable interconnect networks for switch matrix applications. To explore the topic, three tasks are considered: planar (2D) multi-port RF MEMS switches, 3D multi-port RF MEMS switches, and RF MEMS switch matrix integration. <br /><br /> One key objective of this thesis is to investigate novel configurations for planar multi-port (SPNT), C-type, and R-type switches. Such switches represent the basic building blocks of switch matrices operating at microwave frequencies. An in house monolithic fabrication process dedicated to electrostatic multi-port RF MEMS switches is developed and fine tuned. The measurement results exhibit an excellent RF performance verifying the concept. Also, thermally actuated multi-port switches for satellite applications are designed and analyzed. The switch performance at room condition as well as at a very low temperature of 77K degrees (to resemble the harsh environment of satellite applications) is measured and discussed in detail. <br /><br /> For the first time, a new category of 3D RF MEMS switches is introduced to the MEMS community. These switches are not only extremely useful for high power applications but also have a great potential for high frequencies and millimetre-waves. The concept is based on the integration of vertically actuated MEMS actuators inside 3D transmission lines such as waveguides and coaxial lines. An SPST and C-type switches based on the integration of rotary thermal and electrostatic actuators are designed and realized. The concept is verified for the frequencies up to 30GHz with measured results. A high power test analysis and measurement data indicates no major change in performance as high as 13W. <br /><br /> The monolithic integration of the RF MEMS switch matrix involves the design and optimization of a unique interconnect network which is amenable to the MEMS fabrication process. While the switches and interconnect lines are fabricated on the front side, taking advantage of the back side patterning provides a high isolation for cross over junctions. Two different techniques are adopted to optimize the interconnect network. They are based on vertical three-via interconnects and electromagnetically coupled junctions. The data illustrates that for a return loss of less than -20dB up to 30GHz, an isolation of better than 40dB is obtained. This technique not only eliminates the need for expensive multilayer manufacturing process such as Low Temperature Co-fired Ceramics (LTCC) but also provides a unique approach to fabricate the entire switch matrix monolithically.
503

Surface-directed assembly of fibrillar extracellular matrices

Capadona, Jeffrey R. 21 April 2005 (has links)
Biologically-inspired materials have emerged as promising substrates for enhanced repair in various therapeutic and regenerative medicine applications, including nervous and vascular tissues, bone, and cartilage. These strategies focus on the development of materials that integrate well-characterized domains from biomacromolecules to mimic individual functions of the extracellular matrix (ECM), including cell adhesive motifs, growth factor binding sites, and protease sensitivity. A vital property of the ECM is the fibrillar architecture arising from supramolecular assembly. For example, the fibrillar structure of fibronectin (FN) matrices modulates cell cycle progression, migration, gene expression, cell differentiation, and the assembly of other matrix proteins. Current biomaterials do not actively promote deposition and assembly of ECM. In this research, we describe the rational design and investigation of non-fouling biomimetic surfaces in which an oligopeptide sequence (FN13) from the self-assembly domain of FN is tethered to non-fouling substrates. This surface modification directs cell-mediated co-assembly of robust fibrillar FN and type I collagen (COL) matrices reminiscent of ECM, and increases in cell proliferation rates. Furthermore, the effect of this peptide is surface-directed, as addition of the soluble peptide has no effect on matrix assembly. We have also identified a critical surface density of the immobilized peptide to elicit the full activity. These results contribute to the development and design of biomimetic surface modifications that direct cell function for biomedical and biotechnology applications.
504

Robust A-optimal designs for mixture experiments in Scheffe' models

Chou, Chao-Jin 28 July 2003 (has links)
A mixture experiment is an experiments in which the q-ingredients are nonnegative and subject to the simplex restriction on the (q-1)-dimentional probability simplex. In this work , we investigate the robust A-optimal designs for mixture experiments with uncertainty on the linear, quadratic models considered by Scheffe' (1958). In Chan (2000), a review on the optimal designs including A-optimal designs are presented for each of the Scheffe's linear and quadratic models. We will use these results to find the robust A-optimal design for the linear and quadratic models under some robust A-criteria. It is shown with the two types of robust A-criteria defined here, there exists a convex combination of the individual A-optimal designs for linear and quadratic models respectively to be robust A-optimal. In the end, we compare efficiencies of these optimal designs with respect to different A-criteria.
505

Réseaux systoliques pour la résolution de problèmes linéaires

Melkemi, Lamine. Tchuente, Maurice. January 2008 (has links)
Reproduction de : Thèse de 3e cycle : mathématiques appliquées : Grenoble 1 : 1986. / Titre provenant de l'écran-titre. Bibliogr. p. 105-109.
506

Doppler processing of phase encoded underwater acoustic signals

Eldred, Randy Michael. January 1990 (has links) (PDF)
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, September 1990. / Thesis Advisor(s): Miller, James H. Second Reader: Tummala, Murali. "September 1990." Description based on title screen as viewed on December 17, 2009. DTIC Identifier(s): Acoustic tomography, inverse problems, Fast Hadamard Transforms, theses. Author(s) subject terms: Acoustic tomography, Fast Hadamard Transform, maximal-length sequences, Doppler processing. Includes bibliographical references (p. 95-96). Also available in print.
507

A preconditioned conjugate gradient frontal solver /

Mishra, Munna. January 1981 (has links)
No description available.
508

Quantum Graphs and Equi-transmitting Scattering Matrices

Rao, Wyclife Ogik January 2014 (has links)
The focus of this study is scattering matrices in the framework of quantum graphs,more precisely the matrices which describe equi-transmission. They are unitary andHermitian and are independent of the energies of the associated system. In the firstarticle it is shown that in the case where reflection does not occur, such matrices existonly in even dimensions. A complete description of the matrices in dimensions 2, 4,and 6 is given. In dimension 6, 60 five-parameter families are obtained. The 60 matricesyield a combinatorial bipartite graph K62. In the second article it is shown that whenreflection is allowed, the standard matching conditions matrix is equi-transmitting forany dimension n. All equi-transmitting matrices up to order 6 are described. For oddn (3 and 5), the standard matching conditions matrix is the only equi-transmitting matrix.For even n (2, 4 and 6) there exists other equi-transmitting matrices apart fromthose equivalent to the standard matching conditions. All such additional matriceshave zero trace.
509

The Exponential Function of Matrices

Smalls, Nathalie Nicholle 28 November 2007 (has links)
The matrix exponential is a very important subclass of functions of matrices that has been studied extensively in the last 50 years. In this thesis, we discuss some of the more common matrix functions and their general properties, and we specifically explore the matrix exponential. In principle, the matrix exponential could be computed in many ways. In practice, some of the methods are preferable to others, but none are completely satisfactory. Computations of the matrix exponential using Taylor Series, Scaling and Squaring, Eigenvectors, and the Schur Decomposition methods are provided.
510

A computational study of sparse matrix storage schemes

Haque, Sardar Anisul, University of Lethbridge. Faculty of Arts and Science January 2008 (has links)
The efficiency of linear algebra operations for sparse matrices on modern high performance computing system is often constrained by the available memory bandwidth. We are interested in sparse matrices whose sparsity pattern is unknown. In this thesis, we study the efficiency of major storage schemes of sparse matrices during multiplication with dense vector. A proper reordering of columns or rows usually results in reduced memory traffic due to the improved data reuse. This thesis also proposes an efficient column ordering algorithm based on binary reflected gray code. Computational experiments show that this ordering results in increased performance in computing the product of a sparse matrix with a dense vector. / xi, 76 leaves : ill. ; 29 cm.

Page generated in 0.3537 seconds