• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 753
  • 245
  • 165
  • 53
  • 49
  • 24
  • 15
  • 15
  • 15
  • 15
  • 15
  • 15
  • 12
  • 10
  • 8
  • Tagged with
  • 1482
  • 204
  • 183
  • 154
  • 131
  • 127
  • 127
  • 121
  • 108
  • 90
  • 82
  • 75
  • 73
  • 69
  • 69
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

An empirical analysis of determinants of financial performance of insurance companies in the United Kingdom

Jadi, Diara Md January 2015 (has links)
The determinants that affect the financial performance of an insurance company are complicated due to the intangible nature of insurance products and the lack of transparency in the market. Consequently, the financial performance of insurance companies is important to various stakeholders such as policyholders, insurance intermediaries and policymakers. This study aims to investigate the determinants of financial performance of insurance companies based on their financial strength rating performance. The empirical data are drawn from A.M. Best Insurance Report Online: Non- US Database. The sample consists of 57 insurers in the United Kingdom over the period of 2006 to 2010. The analyses include eight firm-specific variables, which are leverage, profitability, liquidity, size, reinsurance, growth, type of business and organisational form. Rating transition matrices and regression models are employed in this study. Rating transition analysis demonstrates a significant degree of rating changes, as reflected in the rating fluctuations. Based on the empirical results, this study establishes that profitability, liquidity, size and organisational form are statistically significant determinants of financial performance of insurance companies in the United Kingdom. This study recommends an alternative to measure the size of an insurance company, which is based on the gross premium written. In addition, this study provides insights into the effects of the global financial crisis on the financial performance of the insurance companies.
482

Non-negative matrix factorization for face recognition

Xue, Yun 01 January 2007 (has links)
No description available.
483

Semiótica e educação matemática: registros de representação aplicados à teoria das matrizes / Semiotics and mathematics education: representation registries applied to the theory of matrices

Robinson Nelson dos Santos 16 June 2011 (has links)
Este trabalho procura contribuir para uma melhor compreensão dos fenômenos relacionados ao ensino e à aprendizagem de Matemática, tendo como foco a exploração e apreensão de um objeto matemático por meio de suas diversas representações semióticas. Em nossa pesquisa exploratória, nos apoiamos nos estudos do psicólogo francês Raymond Duval, que trata do uso dos registros de representação semiótica na Matemática, para compreender o contexto e as variáveis envolvidas em tais fenômenos. Buscamos estender o alcance das observações de Duval com um estudo prévio das teorias relacionadas à Semiótica, na forma concebida por Charles Sanders Peirce, e com estudos filosóficos que buscaram entender como o homem percebe a realidade que o cerca, principalmente por meio dos escritos de Ernst Cassirer. Utilizamos, nesse trabalho, a teoria das matrizes introduzida aqui com alguns detalhes de sua intricada evolução histórica como exemplo para mostrar a variedade de representações que um objeto matemático pode carregar, e avaliamos, sob este aspecto, uma amostra de livros didáticos representativa das décadas de 1980, 1990 e 2000. / This study is aimed to make a contribution for a better understanding of the phenomena related to teaching and learning of Mathematics. Its focus is the exploration and apprehension of a mathematical object by way of its several semiotic representations. In our exploratory research, we got support from the studies of the French psychologist Raymond Duval, which has dealt with the use of semiotics representations in Mathematics to understand the context and aspects related to such phenomena. We aimed to reinforce Duvals observations by adding a study on the theories that surround the field of Semiotics, from the first concepts of Charles Sanders Peirce and including several philosophical studies, like Ernst Cassirers works, that have offered different understandings on the perception of reality that surrounds the Man. In this work we will find the Theory of Matrices as field of application; we included some historical background on this subject and we also showed the variety of representations that such Mathematical object can support and we evaluated, on such aspect, a representative sample of textbooks published on 1980, 1990 and 2000 decades.
484

Video-based face alignment using efficient sparse and low-rank approach.

January 2011 (has links)
Wu, King Keung. / "August 2011." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (p. 119-126). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgement --- p.v / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Overview of Face Alignment Algorithms --- p.1 / Chapter 1.1.1 --- Objectives --- p.1 / Chapter 1.1.2 --- Motivation: Photo-realistic Talking Head --- p.2 / Chapter 1.1.3 --- Existing methods --- p.5 / Chapter 1.2 --- Contributions --- p.8 / Chapter 1.3 --- Outline of the Thesis --- p.11 / Chapter 2 --- Sparse Signal Representation --- p.13 / Chapter 2.1 --- Introduction --- p.13 / Chapter 2.2 --- Problem Formulation --- p.15 / Chapter 2.2.1 --- l0-nonn minimization --- p.15 / Chapter 2.2.2 --- Uniqueness --- p.16 / Chapter 2.3 --- Basis Pursuit --- p.18 / Chapter 2.3.1 --- From l0-norm to l1-norm --- p.19 / Chapter 2.3.2 --- l0-l1 Equivalence --- p.20 / Chapter 2.4 --- l1-Regularized Least Squares --- p.21 / Chapter 2.4.1 --- Noisy case --- p.22 / Chapter 2.4.2 --- Over-determined systems of linear equations --- p.22 / Chapter 2.5 --- Summary --- p.24 / Chapter 3 --- Sparse Corruptions and Principal Component Pursuit --- p.25 / Chapter 3.1 --- Introduction --- p.25 / Chapter 3.2 --- Sparse Corruptions --- p.26 / Chapter 3.2.1 --- Sparse Corruptions and l1-Error --- p.26 / Chapter 3.2.2 --- l1-Error and Least Absolute Deviations --- p.28 / Chapter 3.2.3 --- l1-Regularized l1-Error --- p.29 / Chapter 3.3 --- Robust Principal Component Analysis (RPCA) and Principal Component Pursuit --- p.31 / Chapter 3.3.1 --- Principal Component Analysis (PCA) and RPCA --- p.31 / Chapter 3.3.2 --- Principal Component Pursuit --- p.33 / Chapter 3.4 --- Experiments of Sparse and Low-rank Approach on Surveillance Video --- p.34 / Chapter 3.4.1 --- Least Squares --- p.35 / Chapter 3.4.2 --- l1-Regularized Least Squares --- p.35 / Chapter 3.4.3 --- l1-Error --- p.36 / Chapter 3.4.4 --- l1-Regularized l1-Error --- p.36 / Chapter 3.5 --- Summary --- p.37 / Chapter 4 --- Split Bregman Algorithm for l1-Problem --- p.45 / Chapter 4.1 --- Introduction --- p.45 / Chapter 4.2 --- Bregman Distance --- p.46 / Chapter 4.3 --- Bregman Iteration for Constrained Optimization --- p.47 / Chapter 4.4 --- Split Bregman Iteration for l1-Regularized Problem --- p.50 / Chapter 4.4.1 --- Formulation --- p.51 / Chapter 4.4.2 --- Advantages of Split Bregman Iteration . . --- p.52 / Chapter 4.5 --- Fast l1 Algorithms --- p.54 / Chapter 4.5.1 --- l1-Regularized Least Squares --- p.54 / Chapter 4.5.2 --- l1-Error --- p.55 / Chapter 4.5.3 --- l1-Regularized l1-Error --- p.57 / Chapter 4.6 --- Summary --- p.58 / Chapter 5 --- Face Alignment Using Sparse and Low-rank Decomposition --- p.61 / Chapter 5.1 --- Robust Alignment by Sparse and Low-rank Decomposition for Linearly Correlated Images (RASL) --- p.61 / Chapter 5.2 --- Problem Formulation --- p.62 / Chapter 5.2.1 --- Theory --- p.62 / Chapter 5.2.2 --- Algorithm --- p.64 / Chapter 5.3 --- Direct Extension of RASL: Multi-RASL --- p.66 / Chapter 5.3.1 --- Formulation --- p.66 / Chapter 5.3.2 --- Algorithm --- p.67 / Chapter 5.4 --- Matlab Implementation Details --- p.68 / Chapter 5.4.1 --- Preprocessing --- p.70 / Chapter 5.4.2 --- Transformation --- p.73 / Chapter 5.4.3 --- Jacobian Ji --- p.74 / Chapter 5.5 --- Experiments --- p.75 / Chapter 5.5.1 --- Qualitative Evaluations Using Small Dataset --- p.76 / Chapter 5.5.2 --- Large Dataset Test --- p.81 / Chapter 5.5.3 --- Conclusion --- p.85 / Chapter 5.6 --- Sensitivity analysis on selection of references --- p.87 / Chapter 5.6.1 --- References from consecutive frames --- p.88 / Chapter 5.6.2 --- References from RASL-aligned images --- p.91 / Chapter 5.7 --- Summary --- p.92 / Chapter 6 --- Extension of RASL for video: One-by-One Approach --- p.96 / Chapter 6.1 --- One-by-One Approach --- p.96 / Chapter 6.1.1 --- Motivation --- p.97 / Chapter 6.1.2 --- Algorithm --- p.97 / Chapter 6.2 --- Choices of Optimization --- p.101 / Chapter 6.2.1 --- l1-Regularized Least Squares --- p.101 / Chapter 6.2.2 --- l1-Error --- p.102 / Chapter 6.2.3 --- l1-Regularized l1-Error --- p.103 / Chapter 6.3 --- Experiments --- p.104 / Chapter 6.3.1 --- Evaluation for Different l1 Algorithms --- p.104 / Chapter 6.3.2 --- Conclusion --- p.108 / Chapter 6.4 --- Exploiting Property of Video --- p.109 / Chapter 6.5 --- Summary --- p.110 / Chapter 7 --- Conclusion and Future Work --- p.112 / Chapter A --- Appendix --- p.117 / Bibliography --- p.119
485

The Singular Values of the Exponientiated Adjacency Matrixes of Broom-Tree Graphs

Powell, Tracy 01 May 2006 (has links)
In this paper, we explore the singular values of adjacency matrices {An} for a particular family {Gn} of graphs, known as broom trees. The singular values of a matrix M are defined to be the square roots of the eigenvalues of the symmetrized matrix MTM. The matrices we are interested in are the symmetrized adjacency matrices AnTAn and the symmetrized exponentiated adjacency matrices BnTBn = (eAn − I)T(eAn − I) of the graphs Gn. The application of these matrices in the HITS algorithm for Internet searches suggests that we study whether the largest two eigenvalues of AnTAn (or those of BnTBn) can become close or in fact coincide. We have shown that for one family of broom-trees, the ratio of the two largest eigenvalues of BnTBn as the number n of nodes (more specifically, the length l of the graph) goes to infinity is bounded below one. This bound shows that for these graphs, the second largest eigenvalue remains bounded away from the largest eigenvalue. For a second family of broom trees it is not known whether the same is true. However, we have shown that for that family a certain later eigenvalue remains bounded away from the largest eigenvalue. Our last result is a generalization of this latter result.
486

Construction and application of hierarchical matrix preconditioners

Yang, Fang 01 January 2008 (has links)
H-matrix techniques use a data-sparse tree structure to represent a dense or a sparse matrix. The leaves of the tree store matrix sub-blocks that are represented in full-matrix format or Rk-matrix (low rank matrix) format. H-matrix arithmetic is defined over the H-matrix representation, which includes operations such as addition, multiplication, inversion, and LU factorization. These H-matrix operations approximate results with almost optimal computational complexity. Based on the properties of H-matrices, the H-matrix preconditioner technique has been introduced. It uses H-matrix operations to construct preconditioners, which are used in iterative methods to speed up the solution of large systems of linear equations (Ax = b). To apply the H-matrix preconditioner technique, the first step is to represent a problem in H-matrix format. The approaches to construct an H-matrix can be divided into two categories: geometric approaches and algebraic approaches. In this thesis, we present our contributions to algebraic H-matrix construction approaches and H-matrix preconditioner technique. We have developed a new algebraic H-matrix construction approach based on matrix graphs and multilevel graph clustering approaches. Based on the new construction approach, we have also developed a scheme to build algebraic H-matrix preconditioners for systems of saddle point type. To verify the effectiveness of our new construction approach and H-matrix preconditioner scheme, we have applied them to solve various systems of linear equations arising from finite element methods and meshfree methods. The experimental results show that our preconditioners are competitive to other H-matrix preconditioners based on domain decomposition and existing preconditioners such as JOR and AMG preconditioners. Our H-matrix construction approach and preconditioner technique provide an alternative effective way to solve large systems of linear equations.
487

Maximal Rank-One Spaces of Matrices Over Chain Semirings

Scully, Daniel Joseph 01 May 1988 (has links)
Vectors and matrices over the Boolean (0,1) semiring have been studied extensively along with their applications to graph theory. The Boolean (0,1) semiring has been generalized to a class of semirings called chain semirings. This class includes the fuzzy interval. Vectors and matrices over chain semirings are examined. Rank-1 sets of vectors are defined and characterized. These rank-1 sets of vectors are then used to construct spaces of matrices (rank-1 spaces) with the property that all nonzero matrices in the space have semiring rank equal to 1. Finally, three classes of maximal (relative to containment) rank-1 spaces are identified.
488

Intégrales matricielles et Probabilités Non-Commutatives

Collins, Benoit 20 January 2003 (has links) (PDF)
Cette thèse se décompose en trois parties. Dans la première, nous proposons une formule explicite en termes de comptage de chemins sur un graphe de Cayley, pour le calcul de tous les moments de la mesure de Haar sur le groupe unitaire. Ce résultat fournit un théorème général de liberté asymptotique pour des matrices aléatoires, ainsi que des résultats de convergence d'intégrales matricielles unitaires. En particulier, nous donnons une interprétation combinatoire de la limite de l'intégrale d'Itzykson-Zuber, ainsi qu'un lien avec la $R$-transformée de Voiculescu. Dans une deuxième partie, complètement différente, nous définissons un cadre en probabilités non-commutatives dans lequel nous prouvons que la théorie de Martin s'étend et qu'elle permet une représentation intégrale de toute fonction harmonique positive. Comme application de ces résultats purement quantiques, nous calculons les frontières de Martin de certaines marches au hasard classiques dans une chambre de Weyl. L'exemple d'une marche au hasard sur $SU_q(2)$ est aussi traité de manière exhaustive. Dans la troisième partie, nous proposons une approche analytique des asymptotiques de la mesure de Haar sur un groupe compact. Nous calculons l'image de la mesure de Haar du groupe unitaire par contraction par un projecteur. Ceci nous permet de retrouver et d'interpréter de manière combinatoire certaines asymptotiques obtenues dans la première partie. Par ailleurs, nous établissons que le carré la partie radiale d'une contraction d'une matrice unitaire aléatoire est un ensemble de Jacobi. Une méthode de polynômes orthogonaux permet alors de renforcer des résultats de convergence asymptotiques prédits par les probabilités libres, et d'établir des propriétés d'universalité des valeurs propres.
489

Modèles de matrices aléatoires à N grand, groupe de renormalisation, solutions exactes et universalité

Bonnet, Gabrielle 16 June 2000 (has links) (PDF)
Les modèles de matrices aléatoires, d'abord introduits en physique pour décrire les statistiques de niveaux d'énergie en physique nucléaire, ont par la suite trouvé des applications dans des domaines extrêmement variés, du chaos quantique et de la physique mésoscopique, à la chromodynamique quantique, la théorie des cordes et la gravité quantique via les modèles de surfaces aléatoires. Bien que certains modèles de matrices soient bien compris, il s'agit principalement des cas particuliers de matrices couplées en chaîne, correspondant à des théories de gravité quantique ou des théories des cordes de charge centrale conforme inférieure ou égale à un. Ainsi, tout un pan des modèles de matrices aléatoires, les modèles de matrices de charge centrale c>1, nous échappe. J'ai cherché, au cours de mon travail de thèse, à mieux comprendre et à résoudre ces modèles. La méthode de groupe de renormalisation nous a permis, par l'étude de l'évolution des flots en fonction de la charge centrale conforme, de mieux comprendre le lien entre celle-ci et le comportement des modèles de matrices [G. Bonnet, F. David, Nucl. Phys. B552 (1999) 511-528, hep-th/9811216]. Par la méthode des équations de boucles, nous avons résolu [G. Bonnet, Phys. Lett. B 459 (1999) 575, hep-th/9904058; B. Eynard, G. Bonnet Phys. Lett. B 453 (1999) 273, hep-th/9906130] des modèles de matrices couplées deux à deux : les modèles de Potts-q sur réseau aléatoire. Cette résolution ouvre la voie à celle d'une classe de modèles plus vaste que les simples modèles de matrices couplées en chaîne. Enfin, bien que dans notre étude nous nous soyons intéressés principalement à la limite planaire, où la taille N des matrices tend vers l'infini, nous avons aussi étudié l'effet, sous-dominant dans la fonction de partition du modèle, de la discrétisation des valeurs propres. Nous avons montré [G. Bonnet, F. David, B. Eynard, cond-mat/0003324] que, dans le cas d'un modèle où le support des valeurs propres est non-connexe, il n'y a pas de développement topologique en puissances de N. L'influence de la discrétisation des valeurs propres devient alors d'ordre dominant dans les fonctions de corrélation à deux points ou au-delà. Nous allons commencer ici par la signification physique des modèles de matrices, puis nous parlerons des techniques classiques de résolution, enfin, nous décrirons les résultats que nous avons obtenus au cours de cette thèse.
490

Mécanique Quantique Matricielle et la Théorie des Cordes à Deux Dimensions dans des Fonds Non-triviaux

Alexandrov, Serguei Y. 23 September 2003 (has links) (PDF)
La théorie des cordes est le candidat le plus promettant pour la théorie unissant toutes les interactions en incluant la gravitation. Elle a la dynamique très compliquée. C'est pourquoi c'est utile d'étudier ses simplifications. Une de celles-ci est la théorie des cordes non-critiques qui peut être définie dans les dimensions inférieures. Le cas particulièrement intéressant est la théorie des cordes à deux dimensions. D'une part elle a la structure très riche et d'autre part elle est résoluble exactement. La solution complète de la théorie des cordes à deux dimensions dans le fond le plus simple du dilaton linéaire a été obtenue en utilisant sa représentation comme la mécanique quantique matricielle. Ce modèle de matrices fournit une technique très puissante et découvre l'intégrabilité cachée dans la formulation habituelle de CFT. Cette thèse prolonge la formulation de la théorie des cordes à deux dimensions par des modèles de matrices dans des fonds non-triviaux. Nous montrons comment les perturbations changeants le fond sont incorporés à la mécanique quantique matricielle. Les perturbations sont intégrables et dirigées par la hiérarchie de Toda. Cette intégrabilité est utilisée pour extraire l'information divers sur le système perturbé: les fonctions des corrélations, le comportement thermodynamique, la structure de l'espace-temps. Les résultats concernant ces et autres questions, comme des effets non-perturbatifs dans la théorie des cordes non-critiques, sont présentés dans cette thèse.

Page generated in 0.0767 seconds