Spelling suggestions: "subject:"1atrix method"" "subject:"béatrix method""
51 |
Electromagnetic Wave Propagation in Two-Dimensional Photonic CrystalsStavroula Foteinopoulou January 2003 (has links)
Thesis (Ph.D.); Submitted to Iowa State Univ., Ames, IA (US); 12 Dec 2003. / Published through the Information Bridge: DOE Scientific and Technical Information. "IS-T 2048" Stavroula Foteinopoulou. 12/12/2003. Report is also available in paper and microfiche from NTIS.
|
52 |
Rezonanční srážky elektronů s dvouatomovými molekulami / Resonant collisions of electrons with diatomic moleculesAlt, Václav January 2016 (has links)
This work aims at calculating the cross sections for vibrational excitation of the oxygen molecules by collisons with electrons. Potential energy curves are obtained with standard quantum chemistry methods and the R-matrix method with good agreement with measurable molecular properties, the cross sections are calculated within the local complex potential approximation. It was shown that the results obtained with different, but seemingly satisfactory settings can vary by a significant degree. Comparison with experimental data then point out the insufficiency of the local complex potential approximation. Powered by TCPDF (www.tcpdf.org)
|
53 |
Use of mode coupling to enhance sound attenuation in acoustic ducts : effects of exceptional point / Utilisation de couplage de modes pour l'amplification de l'atténuation du son dans les conduits acoustiques : effets du point exceptionnelXiong, Lei 24 March 2016 (has links)
Deux stratégies sont présentées à utiliser des effets de couplage de modes pour l’amplification de l’atténuation du son dans les conduits acoustiques. La première est de coupler le mode incident propagatif avec un mode localisé, aussi appelé résonance de Fano. Cette stratégie est présentée et validée dans un système conduit-cavité et un guide d’onde partiellement traité en paroi avec un matériau à réaction locale. La méthode “R-matrix” est introduite pour résoudre le problème de propagation d’onde. Une annulation de la transmission se produit quand un mode piégé (qui est formé par les interférences de deux modes voisins) est excité dans le système ouvert. Ce phénomène est aussi lié au croisement évité des valeurs propres et à un point exceptionnel. Dans la seconde stratégie, un réseau d’inclusions rigides périodiques est intégré dans une couche poreuse pour améliorer l’atténuation du son à basse fréquence. Le couplage de modes est du à la présence de ces inclusions. Le théorème de Floquet-Bloch est proposé pour analyser l’atténuation du son dans un guide d’onde périodique en 2D. Un croisement de l’atténuation de deux ondes de Bloch est observé. Ce phénomène est utilisé pour expliquer le pic de pertes en transmission observé expérimentalement et numériquement dans un guide 3D partiellement traitée par un matériau poreux avec des inclusions périodiques. Enfin, le comportement acoustique d’un liner purement réactif dans un conduit rectangulaire avec et sans écoulement est étudié. Dans une certaine gamme de fréquence, aucune onde ne peut se propager à contre sens de l’écoulement. Par analyse des différent modes à l’aide de la relation de dispersion, il est démontré que le son peut être ralenti et même arrêté. / Two strategies are presented to use the mode coupling effects to enhance sound attenuation in acoustic ducts. The strategy is to couple the incoming propagative mode with the localized mode, which is also called Fano resonance. This strategy is presented and validated in a duct-cavity system and a waveguide partially lined with a locally reacting material. The R-matrix method is introduced to solve the propagation problems. A zero in the transmission is present, due to the excitation of a trapped mode which is formed by the interferences of two neighboured modes. It is also linked to the avoided crossing of the eigenvalues and exceptional point. In the second strategy, a set of periodic rigid inclusions are embedded in a porous lining to enhance sound attenuation at low frequencies. The mode coupling is due to the presence of the embedded inclusions. Floquet - Bloch theorem is proposed to investigate the attenuation in a 2D periodic waveguide. Crossing is observed between the mode attenuations of two Bloch waves. The most important and interesting figure is that near the frequency where the crossing appears, an attenuation peak is observed. This phenomenon can be used to explain the transmission loss peak observed numerically and experimentally in a 3D waveguide partially lined by a porous material embedded with periodic inclusions. Finally, the acoustical behaviours of a purely reacting liner in a duct in absence and presence of flow are investigated. The results exhibit an unusual acoustical behaviour : for a certain range of frequencies, no wave can propagate against the flow. a negative group velocity is found, and it is demonstrated that the sound can be slowed down and even stopped.
|
54 |
Spectroscopy and Machine Learning: Development of Methods for Cancer Detection Using Mid-Infrared WavelengthsBradley, Rebecca C. January 2021 (has links)
No description available.
|
55 |
Enhancing numerical modelling efficiency for electromagnetic simulation of physical layer componentsSasse, Hugh Granville January 2010 (has links)
The purpose of this thesis is to present solutions to overcome several key difficulties that limit the application of numerical modelling in communication cable design and analysis. In particular, specific limiting factors are that simulations are time consuming, and the process of comparison requires skill and is poorly defined and understood. When much of the process of design consists of optimisation of performance within a well defined domain, the use of artificial intelligence techniques may reduce or remove the need for human interaction in the design process. The automation of human processes allows round-the-clock operation at a faster throughput. Achieving a speedup would permit greater exploration of the possible designs, improving understanding of the domain. This thesis presents work that relates to three facets of the efficiency of numerical modelling: minimizing simulation execution time, controlling optimization processes and quantifying comparisons of results. These topics are of interest because simulation times for most problems of interest run into tens of hours. The design process for most systems being modelled may be considered an optimisation process in so far as the design is improved based upon a comparison of the test results with a specification. Development of software to automate this process permits the improvements to continue outside working hours, and produces decisions unaffected by the psychological state of a human operator. Improved performance of simulation tools would facilitate exploration of more variations on a design, which would improve understanding of the problem domain, promoting a virtuous circle of design. The minimization of execution time was achieved through the development of a Parallel TLM Solver which did not use specialized hardware or a dedicated network. Its design was novel because it was intended to operate on a network of heterogeneous machines in a manner which was fault tolerant, and included a means to reduce vulnerability of simulated data without encryption. Optimisation processes were controlled by genetic algorithms and particle swarm optimisation which were novel applications in communication cable design. The work extended the range of cable parameters, reducing conductor diameters for twisted pair cables, and reducing optical coverage of screens for a given shielding effectiveness. Work on the comparison of results introduced ―Colour maps‖ as a way of displaying three scalar variables over a two-dimensional surface, and comparisons were quantified by extending 1D Feature Selective Validation (FSV) to two dimensions, using an ellipse shaped filter, in such a way that it could be extended to higher dimensions. In so doing, some problems with FSV were detected, and suggestions for overcoming these presented: such as the special case of zero valued DC signals. A re-description of Feature Selective Validation, using Jacobians and tensors is proposed, in order to facilitate its implementation in higher dimensional spaces.
|
56 |
有限離散條件分配族相容性之研究 / A study on the compatibility of the family of finite discrete conditional distributions.李瑋珊, Li, Wei-Shan Unknown Date (has links)
中文摘要
有限離散條件分配相容性問題可依相容性檢驗、唯一性檢驗以及找出所有的聯合機率分配三層次來討論。目前的文獻資料有幾種研究方法,本文僅分析、比較其中的比值矩陣法和圖形法。
二維中,我們發現簡化二分圖的分支與IBD矩陣中的對角塊狀矩陣有密切的對應關係。在檢驗相容性時,圖形法只需檢驗簡化二分圖中的每個分支,正如同比值矩陣法只需檢驗IBD矩陣中的每一個對角塊狀矩陣即可。在檢驗唯一性時,圖形法只需檢驗簡化二分圖中的分支數是否唯一,正如同比值矩陣法只需檢驗IBD矩陣中的對角塊狀數是否唯一即可。在求所有的聯合機率分配時,運用比值矩陣法可推算出所有的聯合機率分配,但是圖形法則無法求出。
三維中,本文提出了修正比值矩陣法,將比值數組按照某種索引方式在平面上有規則地呈現,可降低所需處理矩陣的大小。此外,我們也發現修正比值矩陣中的橫直縱迴路和簡化二分圖中的迴路有對應的關係,因此可觀察出兩種方法所獲致某些結論的關聯性。在檢驗唯一性時,圖形法是檢驗簡化二分圖中的分支數是否唯一,而修正比值矩陣法是檢驗兩個修正比值矩陣是否分別有唯一的GROPE矩陣。修正比值矩陣法可推算出所有的聯合機率分配。
圖形法可用於任何維度中,修正比值矩陣法也可推廣到任何維度中,但在應用上,修正比值矩陣法比圖形法較為可行。 / The issue of the compatibility of finite discrete conditional distributions could be discussed hierarchically according to the compatibility, the uniqueness, and finding all possible joint probability distributions. There are several published methods, but only the Ratio Matrix Method and the Graphical Method are analyzed and compared in this thesis.
In bivariate case, a close correspondence between the components of the reduced bipartite graph and the diagonal block matrices of the IBD matrix can be found. When we examine the compatibility, just as simply each diagonal block matrix of the IBD matrix needs to be examined using the Ratio Matrix Method, so does each component of the reduced bipartite graph using the Graphical Method. When we examine the uniqueness, just as whether the number of the diagonal blocks of the IBD matrix is unique needs to be examined, so does the number of the components of the reduced bipartite graph. The Ratio Matrix Method can provide all possible joint probability distributions, but the Graphical Method cannot.
In trivariate case, this thesis proposes a Revised Ratio Matrix Method, in which we can present the ratio array regularly in the plane according to the index and reduce the corresponding matrix size. It is also found that each circuit in the revised ratio matrix corresponds to a circuit in the reduced bipartite graph. Therefore, the relation between the results of the two methods can be observed. When we examine the uniqueness with the Graphical Method, we examine whether the number of the components in the reduced bipartite graph is unique. But with the Revised Ratio Matrix Method, we examine whether each revised ratio matrix has a unique GROPE matrix. All possible joint probability distributions can be derived through the Revised Ratio Matrix Method.
The Graphical Method can be applied to the higher dimensional cases, so can the Revised Ratio Matrix Method. But the Revised Ratio Matrix Method is more feasible than the Graphical Method in application.
|
57 |
La structure de Jordan des matrices de transfert des modèles de boucles et la relation avec les hamiltoniens XXZMorin-Duchesne, Alexi 08 1900 (has links)
Les modèles sur réseau comme ceux de la percolation, d’Ising et de Potts servent
à décrire les transitions de phase en deux dimensions. La recherche de leur solution
analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modèles statistiques bidimensionnels sont
invariants sous les transformations conformes et la construction de théories des
champs conformes rationnelles, limites continues des modèles statistiques, permet
un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent
cependant que le paradigme des théories des champs conformes rationnelles peut
être élargi pour inclure les modèles statistiques avec des matrices de transfert non diagonalisables. Ces modèles seraient alors décrits, dans la limite d’échelle, par
des théories des champs logarithmiques et les représentations de l’algèbre de Virasoro
intervenant dans la description des observables physiques seraient indécomposables.
La matrice de transfert de boucles D_N(λ, u), un élément de l’algèbre de Temperley-
Lieb, se manifeste dans les théories physiques à l’aide des représentations
de connectivités ρ (link modules). L’espace vectoriel sur lequel agit cette représentation se décompose en secteurs étiquetés par un paramètre physique, le nombre d de défauts. L’action de cette représentation ne peut que diminuer ce nombre ou le laisser constant. La thèse est consacrée à l’identification de la structure de Jordan de D_N(λ, u) dans ces représentations. Le paramètre β = 2 cos λ = −(q + 1/q) fixe la théorie : β = 1 pour la percolation et √2 pour le modèle d’Ising, par exemple.
Sur la géométrie du ruban, nous montrons que D_N(λ, u) possède les mêmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous étudions la non
diagonalisabilité de F_N à l’aide des divergences de certaines composantes de ses
vecteurs propres, qui apparaissent aux valeurs critiques de λ. Nous prouvons dans
ρ(D_N(λ, u)) l’existence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d′ lorsque certaines contraintes sur λ, d, d′ et N sont satisfaites.
Pour le modèle de polymères denses critique (β = 0) sur le ruban, les valeurs
propres de ρ(D_N(λ, u)) étaient connues, mais les dégénérescences conjecturées. En
construisant un isomorphisme entre les modules de connectivités et un sous-espace
des modules de spins du modèle XXZ en q = i, nous prouvons cette conjecture.
Nous montrons aussi que la restriction de l’hamiltonien de boucles à un secteur
donné est diagonalisable et trouvons la forme de Jordan exacte de l’hamiltonien
XX, non triviale pour N pair seulement.
Enfin nous étudions la structure de Jordan de la matrice de transfert T_N(λ, ν)
pour des conditions aux frontières périodiques. La matrice T_N(λ, ν) a des blocs de Jordan intrasectoriels et intersectoriels lorsque λ = πa/b, et a, b ∈ Z×. L’approche
par F_N admet une généralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excède 2 dans certains cas et peut croître indéfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les représentations de connectivités sur le cylindre et celles du modèle XXZ sont isomorphes sauf pour certaines valeurs précises de q et du paramètre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs généralisés de Jordan de rang 2 et
discutons l’existence de blocs de Jordan intrasectoriels de plus haut rang. / Lattice models such as percolation, the Ising model and the Potts model are useful
for the description of phase transitions in two dimensions. Finding analytical solutions is done by calculating the partition function, which in turn requires finding
eigenvalues of transfer matrices. At the critical point, the two dimensional statistical models are invariant under conformal transformations and the construction of rational conformal field theories, as the continuum limit of these lattice models, allows one to compute the partition function at the critical point. Many researchers think however that the paradigm of rational conformal conformal field theories can be extended to include models with non diagonalizable transfer matrices. These models would then be described, in the scaling limit, by logarithmic conformal field theories and the representations of the Virasoro algebra coming into play would be indecomposable.
We recall the construction of the double-row transfer matrix D_N(λ, u) of the
Fortuin-Kasteleyn model, seen as an element of the Temperley-Lieb algebra. This transfer matrix comes into play in physical theories through its representation in link modules (or standard modules). The vector space on which this representation acts decomposes into sectors labelled by a physical parameter d, the number of defects, which remains constant or decreases in the link representations. This thesis is devoted to the identification of the Jordan structure of D_N(λ, u) in the link representations.
The parameter β = 2 cos λ = −(q + 1/q) fixes the theory : for instance β = 1 for percolation and √2 for the Ising model.
On the geometry of the strip with open boundary conditions, we show that D_N(λ, u) has the same Jordan blocks as its highest Fourier coefficient, F_N. We study
the non-diagonalizability of F_N through the divergences of some of the eigenstates of ρ(F_N) that appear at the critical values of λ. The Jordan cells we find in ρ(D_N(λ, u)) have rank 2 and couple sectors d and d′ when specific constraints on λ, d, d′ and N are satisfied.
For the model of critical dense polymers (β = 0) on the strip, the eigenvalues
of ρ(D_N(λ, u)) were known, but their degeneracies only conjectured. By constructing an isomorphism between the link modules on the strip and a subspace of spin
modules of the XXZ model at q = i, we prove this conjecture. We also show that the restriction of the Hamiltonian to any sector d is diagonalizable, and that the XX
Hamiltonian has rank 2 Jordan cells when N is even.
Finally, we study the Jordan structure of the transfer matrix T_N(λ, ν) for periodic
boundary conditions. When λ = πa/b and a, b ∈ Z×, the matrix T_N(λ, ν) has Jordan blocks between sectors, but also within sectors. The approach using F_N admits
a generalization to the present case and allows us to probe the Jordan cells
that tie different sectors. The rank of these cells exceeds 2 in some cases and can
grow indefinitely with N. For the Jordan blocks within a sector, we show that the
link modules on the cylinder and the XXZ spin modules are isomorphic except for
specific curves in the (q, v) plane. By using the behavior of the transformation i_N^d in a neighborhood of the critical values (q_c, v_c), we explicitly build Jordan partners of rank 2 and discuss the existence of Jordan cells with higher rank.
|
58 |
Complex photonic structures in nature : from order to disorderOnelli, Olimpia Domitilla January 2018 (has links)
Structural colours arise from the interaction of visible light with nano-structured materials. The occurrence of such structures in nature has been known for over a century, but it is only in the last few decades that the study of natural photonic structures has fully matured due to the advances in imagining techniques and computational modelling. Even though a plethora of different colour-producing architectures in a variety of species has been investigated, a few significant questions are still open: how do these structures develop in living organisms? Does disorder play a functional role in biological photonics? If so, is it possible to say that the optical response of natural disordered photonics has been optimised under evolutionary pressure? And, finally, can we exploit the well-adapted photonic design principles that we observe in Nature to fabricate functional materials with optimised scattering response? In my thesis I try to answer the questions above: I microscopically investigate $\textit{in vivo}$ the growth of a cuticular multilayer, one of the most common colour-producing strategies in nature, in the green beetles $\textit{Gastrophysa viridula}$ showing how the interplay between different materials varies during the various life stages of the beetles; I further investigate two types of disordered photonic structures and their biological role, the random array of spherical air inclusions in the eggshells of the honeyguide $\textit{Prodotiscus regulus}$, a species under unique evolutionary pressure to produce blue eggs, and the anisotropic chitinous network of fibres in the white beetle $\textit{Cyphochilus}$, the whitest low-refractive index material; finally, inspired by these natural designs, I fabricate and study light transport in biocompatible highly-scattering materials.
|
59 |
La structure de Jordan des matrices de transfert des modèles de boucles et la relation avec les hamiltoniens XXZMorin-Duchesne, Alexi 08 1900 (has links)
Les modèles sur réseau comme ceux de la percolation, d’Ising et de Potts servent
à décrire les transitions de phase en deux dimensions. La recherche de leur solution
analytique passe par le calcul de la fonction de partition et la diagonalisation de matrices de transfert. Au point critique, ces modèles statistiques bidimensionnels sont
invariants sous les transformations conformes et la construction de théories des
champs conformes rationnelles, limites continues des modèles statistiques, permet
un calcul de la fonction de partition au point critique. Plusieurs chercheurs pensent
cependant que le paradigme des théories des champs conformes rationnelles peut
être élargi pour inclure les modèles statistiques avec des matrices de transfert non diagonalisables. Ces modèles seraient alors décrits, dans la limite d’échelle, par
des théories des champs logarithmiques et les représentations de l’algèbre de Virasoro
intervenant dans la description des observables physiques seraient indécomposables.
La matrice de transfert de boucles D_N(λ, u), un élément de l’algèbre de Temperley-
Lieb, se manifeste dans les théories physiques à l’aide des représentations
de connectivités ρ (link modules). L’espace vectoriel sur lequel agit cette représentation se décompose en secteurs étiquetés par un paramètre physique, le nombre d de défauts. L’action de cette représentation ne peut que diminuer ce nombre ou le laisser constant. La thèse est consacrée à l’identification de la structure de Jordan de D_N(λ, u) dans ces représentations. Le paramètre β = 2 cos λ = −(q + 1/q) fixe la théorie : β = 1 pour la percolation et √2 pour le modèle d’Ising, par exemple.
Sur la géométrie du ruban, nous montrons que D_N(λ, u) possède les mêmes blocs de Jordan que F_N, son plus haut coefficient de Fourier. Nous étudions la non
diagonalisabilité de F_N à l’aide des divergences de certaines composantes de ses
vecteurs propres, qui apparaissent aux valeurs critiques de λ. Nous prouvons dans
ρ(D_N(λ, u)) l’existence de cellules de Jordan intersectorielles, de rang 2 et couplant des secteurs d, d′ lorsque certaines contraintes sur λ, d, d′ et N sont satisfaites.
Pour le modèle de polymères denses critique (β = 0) sur le ruban, les valeurs
propres de ρ(D_N(λ, u)) étaient connues, mais les dégénérescences conjecturées. En
construisant un isomorphisme entre les modules de connectivités et un sous-espace
des modules de spins du modèle XXZ en q = i, nous prouvons cette conjecture.
Nous montrons aussi que la restriction de l’hamiltonien de boucles à un secteur
donné est diagonalisable et trouvons la forme de Jordan exacte de l’hamiltonien
XX, non triviale pour N pair seulement.
Enfin nous étudions la structure de Jordan de la matrice de transfert T_N(λ, ν)
pour des conditions aux frontières périodiques. La matrice T_N(λ, ν) a des blocs de Jordan intrasectoriels et intersectoriels lorsque λ = πa/b, et a, b ∈ Z×. L’approche
par F_N admet une généralisation qui permet de diagnostiquer des cellules intersectorielles dont le rang excède 2 dans certains cas et peut croître indéfiniment avec N. Pour les blocs de Jordan intrasectoriels, nous montrons que les représentations de connectivités sur le cylindre et celles du modèle XXZ sont isomorphes sauf pour certaines valeurs précises de q et du paramètre de torsion v. En utilisant le comportement de la transformation i_N^d dans un voisinage des valeurs critiques (q_c, v_c), nous construisons explicitement des vecteurs généralisés de Jordan de rang 2 et
discutons l’existence de blocs de Jordan intrasectoriels de plus haut rang. / Lattice models such as percolation, the Ising model and the Potts model are useful
for the description of phase transitions in two dimensions. Finding analytical solutions is done by calculating the partition function, which in turn requires finding
eigenvalues of transfer matrices. At the critical point, the two dimensional statistical models are invariant under conformal transformations and the construction of rational conformal field theories, as the continuum limit of these lattice models, allows one to compute the partition function at the critical point. Many researchers think however that the paradigm of rational conformal conformal field theories can be extended to include models with non diagonalizable transfer matrices. These models would then be described, in the scaling limit, by logarithmic conformal field theories and the representations of the Virasoro algebra coming into play would be indecomposable.
We recall the construction of the double-row transfer matrix D_N(λ, u) of the
Fortuin-Kasteleyn model, seen as an element of the Temperley-Lieb algebra. This transfer matrix comes into play in physical theories through its representation in link modules (or standard modules). The vector space on which this representation acts decomposes into sectors labelled by a physical parameter d, the number of defects, which remains constant or decreases in the link representations. This thesis is devoted to the identification of the Jordan structure of D_N(λ, u) in the link representations.
The parameter β = 2 cos λ = −(q + 1/q) fixes the theory : for instance β = 1 for percolation and √2 for the Ising model.
On the geometry of the strip with open boundary conditions, we show that D_N(λ, u) has the same Jordan blocks as its highest Fourier coefficient, F_N. We study
the non-diagonalizability of F_N through the divergences of some of the eigenstates of ρ(F_N) that appear at the critical values of λ. The Jordan cells we find in ρ(D_N(λ, u)) have rank 2 and couple sectors d and d′ when specific constraints on λ, d, d′ and N are satisfied.
For the model of critical dense polymers (β = 0) on the strip, the eigenvalues
of ρ(D_N(λ, u)) were known, but their degeneracies only conjectured. By constructing an isomorphism between the link modules on the strip and a subspace of spin
modules of the XXZ model at q = i, we prove this conjecture. We also show that the restriction of the Hamiltonian to any sector d is diagonalizable, and that the XX
Hamiltonian has rank 2 Jordan cells when N is even.
Finally, we study the Jordan structure of the transfer matrix T_N(λ, ν) for periodic
boundary conditions. When λ = πa/b and a, b ∈ Z×, the matrix T_N(λ, ν) has Jordan blocks between sectors, but also within sectors. The approach using F_N admits
a generalization to the present case and allows us to probe the Jordan cells
that tie different sectors. The rank of these cells exceeds 2 in some cases and can
grow indefinitely with N. For the Jordan blocks within a sector, we show that the
link modules on the cylinder and the XXZ spin modules are isomorphic except for
specific curves in the (q, v) plane. By using the behavior of the transformation i_N^d in a neighborhood of the critical values (q_c, v_c), we explicitly build Jordan partners of rank 2 and discuss the existence of Jordan cells with higher rank.
|
60 |
Transport phenomena in quasi-one-dimensional heterostructuresDias, Mariama Rebello de Sousa 21 February 2014 (has links)
Made available in DSpace on 2016-06-02T20:15:31Z (GMT). No. of bitstreams: 1
5844.pdf: 11430873 bytes, checksum: b80a5790a9ebf6ae63ff48e52968ae60 (MD5)
Previous issue date: 2014-02-21 / Universidade Federal de Sao Carlos / O crescimento e caracterização de sistemas de heteroestruturas semicondutoras quasi-unidimensionais têm atraído grande interesse devido à sua potencial de aplicação tecnológica, como foto-detectores, dispositivos opto-eletrônicos assim como seu para o processamento de informação quântica e aplicações em fotônica. O objetivo desta tese é o estudo das propriedades de transporte eletrônico e de spin em sistemas semicondutores quasi-unidimensionais, especificamente trataremos de nanofios (NWs) homogêneos, NWs acoplados, NWs do tipo plano-geminado (TP), diodos de tunelamento ressonante (ETD) e cadeias de pontos quânticos (QDCS). Escolhemos o método k-p, particularmente o Hamiltoniano de Luttinger, para descrever os efeitos de confinamento e tensão biaxial. Este sugeriu uma modulação do caráter do estado fundamental que, complementada com a dinâmica fônons fornecidas pelas simulações da Dinâmica Molecular (MD), permitiu a descrição da modulação da mobilidade de buracos por emissão ou absorção de fônons. Em relação ao sistema de NWs acoplado,estudamos, através do método da matriz de transferência (TMM), as propriedades de transporte de elétrons e spin sob a interação de spin-órbita (SOI) de Eashba, localizada na região de acoplamento entre fios. Foram consideradas várias configurações de tensões de gate (Vg) aplicadas nos fios. Desse modo, compreendemos a modulação do transporte de spin quando esse é projetado no direção-z através da combinação do SOI e das dimensionalidades do sistema. Da mesma forma, a combinação de SOI e da Vg aplicada deu origem a modulação da polarização, quando o spin medido é projetado na mesma direção em que o SOI de Eashba atua, a direção y. Usando o TMM, exploramos as propriedades de transporte de um DBS e o efeito de uma resistência em série com o intuito de provar a natureza da biestabilidade das curvas características I V bem como o aumento de sua área com temperatura, resultados fornecidos por experimentos. O modelo indicou que aumentando da resistência pela diminuição sa temperatura aumenta a área biestável. A presença de uma hetero-junção adicional ao sistema induz uma densidade de carga nas suas interfaces. De acordo com esta configuração, a queda de tensão total do ETDS muda, podendo ser confirmada experimentalmente. A formação dos peculiares campos de deformação e sua influência sobre a estrutura eletrônicas e propriedades de transporte em superredes de TP foi estudada sistematicamente. Assim, as propriedades de transporte, de ambos os elétrons e buracos, pode ser sintonizada eficientemente, mesmo no caso de elétrons r em sistemas de blenda de zinco, contrastando com a prevista transparência de elétrons r em superredes de semicondutores III-V heteroestruturados. Além disso, constatamos que a probabilidade de transmissão para buracos da banda de valência também poderia ser efetivamente modificada através de uma tensão externa.Por fim, colaboradores sintetizaram com sucesso sistemas de QDCs de InGaAs através da epitaxia de feixe molecular e engenharia de tensão. Um comportamento anisotrópico da condutância com a temperatura foi observado em QDCs com diferentes concentrações de dopagem, medida realizada ao longo e entre os QDCs. O modelo teórico 1D de hoppíng desenvolvido mostrou que a presença de estados OD modela a resposta anisotrópica da condutância neste sistemas. / The growth and characterization of semiconductor quasi-one-dimensional heterostructure systems have attracted increasing interest due to their potential technological application, like photo-detectors, optoelectronic devices and their promising features for quantum information processing and photonic applications. The goal of this thesis is the study of electronic and spin transport properties on quasi-one-dimensional semiconductor systems; specifically, homogenous nanowires (NWs), coupled NW s, twin-plane (TP) NWs, resonant tunneling diodes (RTDs), and quantum dot chains (QDCs). The k-p method, in particular the Luttinger Hamiltonian, was chosen to describe the effects of biaxial confinement and strain. This suggested a modulation of the ground state character that, complemented with the phonon dynamics provided by Molecular Dynamics (MD) simulations, allowed the description of the hole mobility modulation by either phonon emission or absorption. Regarding the coupled NW s system, the electron and spin transport properties affected by a Rashba spin-orbit interaction (SOI) at the joined region were unveiled through the Transfer Matrix Method (TMM). Various configurations of gate voltages (Vg), applied on the wire structure, were considered. We were able to understand the modulation of the spin transport projected in the z-direction trough the combination of the SOI and the system dimensionalities. Likewise, the combination of SOI and applied Vg gave rise to a modulation of the polarization, when the measured spin is projected in the same direction where the Rashba SOI acts, the y-direction. The transport properties of a DBS and the effect of a resistance in series was explored within the TMM to prove the nature of a bistability of the I V characteristics and its enhanced area with temperature provided by the experiment. The model indicates that increasing the resistente by decreasing the temperature, the bistable area enhances. The presence of an additional heterojunction induces a sheet charge at its interfaces. Under this configuration, the total voltage drop of the RTD changes and can be confirmed experimentally.The formation of the peculiar strain fields and their influence on the electronic structure and transport properties of a TP superlattice was systematically studied. Hence, the transport properties of both electrons and holes could be effectively tuned even in the case of T-electrons of zincblende systems, contrasting to the predicted transparency of T-electrons in heterolayered III-V semiconductor superlattices. Also, the transmission probability for holes at valence band could also be effectively modified by applying an external stress. Finally, using molecular-beam-epitaxy and skillful strain engineering, systems of In-GaAs QDCs were successfully synthesized by collaborators. The QDCs with different doping concentrations showed an anisotropic behavior of the conductance, measured along and across the QDCs, with temperature. The theoretical ID hopping model developed found that the presence of OD states shapes the anisotropic response of the conductance in this system.
|
Page generated in 0.0604 seconds