• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approximation Algorithms for Covering Problems in Dense Graphs

Levy, Eythan 06 March 2009 (has links)
We present a set of approximation results for several covering problems in dense graphs. These results show that for several problems, classical algorithms with constant approximation ratios can be analyzed in a finer way, and provide better constant approximation ratios under some density constraints. In particular, we show that the maximal matching heuristic approximates VERTEX COVER (VC) and MINIMUM MAXIMAL MATCHING (MMM) with a constant ratio strictly smaller than 2 when the proportion of edges present in the graph (weak density) is at least 3/4, or when the normalized minimum degree (strong density) is at least 1/2. We also show that this result can be improved by a greedy algorithm which provides a constant ratio smaller than 2 when the weak density is at least 1/2. We also provide tight families of graphs for all these approximation ratios. We then looked at several algorithms from the literature for VC and SET COVER (SC). We present a unified and critical approach to the Karpinski/Zelikovsky, Imamura/Iwama and Bar-Yehuda/Kehat algorithms, identifying the general the general scheme underlying these algorithms. Finally, we look at the CONNECTED VERTEX COVER (CVC) problem,for which we proposed new approximation results in dense graphs. We first analyze Carla Savage's algorithm, then a new variant of the Karpinski-Zelikovsky algorithm. Our results show that these algorithms provide the same approximation ratios for CVC as the maximal matching heuristic and the Karpinski-Zelikovsky algorithm did for VC. We provide tight examples for the ratios guaranteed by both algorithms. We also introduce a new invariant, the "price of connectivity of VC", defined as the ratio between the optimal solutions of CVC and VC, and showed a nearly tight upper bound on its value as a function of the weak density. Our last chapter discusses software aspects, and presents the use of the GRAPHEDRON software in the framework of approximation algorithms, as well as our contributions to the development of this system. / Nous présentons un ensemble de résultats d'approximation pour plusieurs problèmes de couverture dans les graphes denses. Ces résultats montrent que pour plusieurs problèmes, des algorithmes classiques à facteur d'approximation constant peuvent être analysés de manière plus fine, et garantissent de meilleurs facteurs d'aproximation constants sous certaines contraintes de densité. Nous montrons en particulier que l'heuristique du matching maximal approxime les problèmes VERTEX COVER (VC) et MINIMUM MAXIMAL MATCHING (MMM) avec un facteur constant inférieur à 2 quand la proportion d'arêtes présentes dans le graphe (densité faible) est supérieure à 3/4 ou quand le degré minimum normalisé (densité forte) est supérieur à 1/2. Nous montrons également que ce résultat peut être amélioré par un algorithme de type GREEDY, qui fournit un facteur constant inférieur à 2 pour des densités faibles supérieures à 1/2. Nous donnons également des familles de graphes extrémaux pour nos facteurs d'approximation. Nous nous somme ensuite intéressés à plusieurs algorithmes de la littérature pour les problèmes VC et SET COVER (SC). Nous avons présenté une approche unifiée et critique des algorithmes de Karpinski-Zelikovsky, Imamura-Iwama, et Bar-Yehuda-Kehat, identifiant un schéma général dans lequel s'intègrent ces algorithmes. Nous nous sommes finalement intéressés au problème CONNECTED VERTEX COVER (CVC), pour lequel nous avons proposé de nouveaux résultats d'approximation dans les graphes denses, au travers de l'algorithme de Carla Savage d'une part, et d'une nouvelle variante de l'algorithme de Karpinski-Zelikovsky d'autre part. Ces résultats montrent que nous pouvons obtenir pour CVC les mêmes facteurs d'approximation que ceux obtenus pour VC à l'aide de l'heuristique du matching maximal et de l'algorithme de Karpinski-Zelikovsky. Nous montrons également des familles de graphes extrémaux pour les ratios garantis par ces deux algorithmes. Nous avons également étudié un nouvel invariant, le coût de connectivité de VC, défini comme le rapport entre les solutions optimales de CVC et de VC, et montré une borne supérieure sur sa valeur en fonction de la densité faible. Notre dernier chapitre discute d'aspects logiciels, et présente l'utilisation du logiciel GRAPHEDRON dans le cadre des algorithmes d'approximation, ainsi que nos contributions au développement du logiciel.
2

Une approche distribuée pour les problèmes de couverture dans les systèmes hautement dynamiques. / A distributed approach for covering problems in highly dynamic systems

Kaaouachi, Mohamed Hamza 12 January 2016 (has links)
Un système distribué est un système composé d'éléments de calcul autonomes dotés de capacité de communication. Il s'agit d'un modèle commun pour l'étude des réseaux. L'évolution rapide des réseaux sans fils et/ou mobiles aussi bien dans la vie quotidienne que dans la recherche amène progressivement à intégrer la dynamique (i.e. l'évolution dans le temps de la connectivité) dans les systèmes distribués. Concrètement, cela revient à ajouter l'hypothèse que les capacités de communication des éléments du système peuvent varier dans le temps. De nombreux modèles considèrent ainsi la dynamique comme composante à part entière du système (et non pas comme une faute). De manière récente, une nouvelle approche, appelée graphe variant dans le temps, tente d'unifier tous ces modèles dans un formalisme commun qui permet de classifier les systèmes en fonction de leurs propriétés de connexité temporelle. Dans cette thèse, nous nous intéressons à des systèmes distribués hautement dynamiques dans lesquels les hypothèses de connexité sont minimalistes. Plus précisément, nous concentrons nos efforts sur les systèmes connexes à travers le temps dans lesquels la seule garantie est que tout élément du système peut infiniment souvent envoyer un message à tout autre (sans garantie sur la pérennité de la route utilisée ni sur le délai de communication). Nous nous intéressons plus particulièrement aux problèmes de couverture (par exemple, ensemble dominant minimal, couplage maximal, ensemble indépendant maximal, ...) dans ces systèmes distribués hautement dynamiques. Les contributions de cette thèse dans ce contexte sont les suivantes. Nous proposons tout d'abord une nouvelle définition pour les problèmes de couverture qui est plus adaptée aux systèmes distribués hautement dynamiques que les définitions existantes. Dans un deuxième temps, nous fournissons un outil générique qui permet de faciliter les preuves de résultats d'impossibilité dans les systèmes distribués dynamiques. Nous appliquons cet outil pour prouver plusieurs résultats d'impossibilité à propos de problèmes de couverture. Ensuite, nous proposons une nouvelle mesure de complexité en temps qui permet de comparer équitablement les performances de protocoles dans les systèmes distribués dynamiques. Enfin, nous donnons un algorithme de construction d'un ensemble dominant minimal dans les systèmes distribués hautement dynamiques. / A distributed system is a system of autonomous computing components endowed with communication abilities. This is a common model for the study of networks. The quick evolution of wireless and mobile network both in everyday life and in research gradually leads to take in account the dynamics (i.e. the evolution over time) in distributed systems. Concretely, this means to add the assumption that the communication abilities of the components of the system may vary over time. Many models consider the dynamics as an integral component of the system (and not as a fault). Recently, a new approach, called time-varying graph, attempts to unify all these models in a common formalism which allows the classification systems based on their temporal connectivity properties. In this thesis, we are interested in highly dynamic distributed systems with minimal connectivity assumptions. Specifically, we focus on connected over time systems where the only guarantee is that any element of the system can infinitely often send a message to any other (no guarantee are provided on the sustainability of the used path nor on the time communication). We are particularly interested in covering problems (e.g., minimal dominanting set, maximal matching, maximal independent set, ...) in these highly dynamic distributed systems. The contributions of this thesis in this context are as follows. We first propose a new definition for the covering problems which is more suited to highly dynamic distributed systems that the existing definitions. Secondly, we provide a generic tool to simplify proof of impossibility results in dynamic distributed systems. We use this tool to prove some impossibility results of covering problems. Then, we propose a new time complexity measure to fairly compare the algorithms performance in dynamic distributed systems. Finally, we give an algorithm that compute a minimal dominating set in highly dynamic distributed systems.
3

Approximation algorithms for covering problems in dense graphs

Levy, Eythan 06 March 2009 (has links)
We present a set of approximation results for several covering problems in dense graphs. These results show that for several problems, classical algorithms with constant approximation ratios can be analyzed in a finer way, and provide better constant approximation ratios under some density constraints. In particular, we show that the maximal matching heuristic approximates VERTEX COVER (VC) and MINIMUM MAXIMAL MATCHING (MMM) with a constant ratio strictly smaller than 2 when the proportion of edges present in the graph (weak density) is at least 3/4, or when the normalized minimum degree (strong density) is at least 1/2. We also show that this result can be improved by a greedy algorithm which provides a constant ratio smaller than 2 when the weak density is at least 1/2. We also provide tight families of graphs for all these approximation ratios. We then looked at several algorithms from the literature for VC and SET COVER (SC). We present a unified and critical approach to the Karpinski/Zelikovsky, Imamura/Iwama and Bar-Yehuda/Kehat algorithms, identifying the general the general scheme underlying these algorithms.<p>Finally, we look at the CONNECTED VERTEX COVER (CVC) problem,for which we proposed new approximation results in dense graphs. We first analyze Carla Savage's algorithm, then a new variant of the Karpinski-Zelikovsky algorithm. Our results show that these algorithms provide the same approximation ratios for CVC as the maximal matching heuristic and the Karpinski-Zelikovsky algorithm did for VC. We provide tight examples for the ratios guaranteed by both algorithms. We also introduce a new invariant, the "price of connectivity of VC", defined as the ratio between the optimal solutions of CVC and VC, and showed a nearly tight upper bound on its value as a function of the weak density. Our last chapter discusses software aspects, and presents the use of the GRAPHEDRON software in the framework of approximation algorithms, as well as our contributions to the development of this system.<p><p>/<p><p>Nous présentons un ensemble de résultats d'approximation pour plusieurs problèmes de couverture dans les graphes denses. Ces résultats montrent que pour plusieurs problèmes, des algorithmes classiques à facteur d'approximation constant peuvent être analysés de manière plus fine, et garantissent de meilleurs facteurs d'aproximation constants sous certaines contraintes de densité. Nous montrons en particulier que l'heuristique du matching maximal approxime les problèmes VERTEX COVER (VC) et MINIMUM MAXIMAL MATCHING (MMM) avec un facteur constant inférieur à 2 quand la proportion d'arêtes présentes dans le graphe (densité faible) est supérieure à 3/4 ou quand le degré minimum normalisé (densité forte) est supérieur à 1/2. Nous montrons également que ce résultat peut être amélioré par un algorithme de type GREEDY, qui fournit un facteur constant inférieur à 2 pour des densités faibles supérieures à 1/2. Nous donnons également des familles de graphes extrémaux pour nos facteurs d'approximation. Nous nous somme ensuite intéressés à plusieurs algorithmes de la littérature pour les problèmes VC et SET COVER (SC). Nous avons présenté une approche unifiée et critique des algorithmes de Karpinski-Zelikovsky, Imamura-Iwama, et Bar-Yehuda-Kehat, identifiant un schéma général dans lequel s'intègrent ces algorithmes.<p>Nous nous sommes finalement intéressés au problème CONNECTED VERTEX COVER (CVC), pour lequel nous avons proposé de nouveaux résultats d'approximation dans les graphes denses, au travers de l'algorithme de Carla Savage d'une part, et d'une nouvelle variante de l'algorithme de Karpinski-Zelikovsky d'autre part. Ces résultats montrent que nous pouvons obtenir pour CVC les mêmes facteurs d'approximation que ceux obtenus pour VC à l'aide de l'heuristique du matching maximal et de l'algorithme de Karpinski-Zelikovsky. Nous montrons également des familles de graphes extrémaux pour les ratios garantis par ces deux algorithmes. Nous avons également étudié un nouvel invariant, le coût de connectivité de VC, défini comme le rapport entre les solutions optimales de CVC et de VC, et montré une borne supérieure sur sa valeur en fonction de la densité faible. Notre dernier chapitre discute d'aspects logiciels, et présente l'utilisation du logiciel GRAPHEDRON dans le cadre des algorithmes d'approximation, ainsi que nos contributions au développement du logiciel. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0617 seconds