• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Wave Energy of an Antenna in Matlab

Fang, Fang, Mehrdad, Dinkoo January 2011 (has links)
In the modern world, because of increasing oil prices and the need to control greenhouse gas emission, a new interest in the production of electric cars is coming about. One of the products is a charging point for electric cars, at which electric cars can be recharged by a plug in cable. Usually people are required to pay for the electricity after recharging the electric cars. Today, the payment is handled by using SMS or through the parking system. There is now an opportunity, in cooperation with AES (the company with which we are working), to equip the pole with GPRS, and this requires development and maintenance of the antenna. The project will include data analysis of the problem, measurements and calculations. In this work, we are computing energy flow of the wave due to the location of the antenna inside the box. We need to do four steps. First, we take a set of points (determined by the computational mesh) that have the same distance from the antenna in the domain. Second, we calculate the angles between the ground and the points in the set. Third, we do an angle-energy plot, to analyse which angle can give the maximum energy. And last, we need to compare the maximum energy value of different position of the antenna. We are going to solve the problem in Matlab, based on the Maxwell equation and the Helmholtz equation, which is not time-dependent.
2

Numerical Vlasov–Maxwell Modelling of Space Plasma

Eliasson, Bengt January 2002 (has links)
The Vlasov equation describes the evolution of the distribution function of particles in phase space (x,v), where the particles interact with long-range forces, but where shortrange "collisional" forces are neglected. A space plasma consists of low-mass electrically charged particles, and therefore the most important long-range forces acting in the plasma are the Lorentz forces created by electromagnetic fields. What makes the numerical solution of the Vlasov equation a challenging task is that the fully three-dimensional problem leads to a partial differential equation in the six-dimensional phase space, plus time, making it hard even to store a discretised solution in a computer’s memory. Solutions to the Vlasov equation have also a tendency of becoming oscillatory in velocity space, due to free streaming terms (ballistic particles), in which steep gradients are created and problems of calculating the v (velocity) derivative of the function accurately increase with time. In the present thesis, the numerical treatment is limited to one- and two-dimensional systems, leading to solutions in two- and four-dimensional phase space, respectively, plus time. The numerical method developed is based on the technique of Fourier transforming the Vlasov equation in velocity space and then solving the resulting equation, in which the small-scale information in velocity space is removed through outgoing wave boundary conditions in the Fourier transformed velocity space. The Maxwell equations are rewritten in a form which conserves the divergences of the electric and magnetic fields, by means of the Lorentz potentials. The resulting equations are solved numerically by high order methods, reducing the need for numerical over-sampling of the problem. The algorithm has been implemented in Fortran 90, and the code for solving the one-dimensional Vlasov equation has been parallelised by the method of domain decomposition, and has been implemented using the Message Passing Interface (MPI) method. The code has been used to investigate linear and non-linear interaction between electromagnetic fields, plasma waves, and particles.
3

Efeitos clássicos e quânticos em teorias não comutativas / Quantum and classical effects in noncomutative theories

Freitas, Tiago Carlos Adorno de 14 January 2013 (has links)
A presente tese de Doutorado refere-se a problemas em teoria de campos e mecânica quântica no espaço não comutativo (NC). Abordamos alguns sistemas físicos bem estudados em física teórica, como a teoria de Maxwell na presença de fontes externas, equação de Pauli, equação de Dirac em campos externos e o espectro do átomo de hidrogênio relativístico. Como um primeiro problema estudamos a teoria de calibre U(1)* e extendemos o mapa de Seiberg-Witten para incluir uma corrente externa e formulamos equações clássicas para os campos no espaço não comutativo. Soluções no vácuo e em um campo magnético externo para uma carga estática de tamanho finito a foram determinadas. Encontramos que uma carga estática além de ser um monopolo elétrico comporta-se como um dipolo magnético e um campo magnético externo modifica o campo de Coulomb a longas distâncias bem como alguns fatores de forma eletromagnéticos, comportamentos inerentes a consideração de uma geometria NC. Nesta direção analisamos a ambiguidade no mapa de Seiberg-Witten e mostramos que, no mínimo até a ordem estudada aqui, isto é equivalente a ambiguidade de se adicionar uma solução homogênea à condição de conservação da corrente. Demandando que o momento magnético NC seja menor que o erro existente na medida do momento magnético de léptons, obtemos uma estimativa superior para o parâmetro e seu comprimento fundamental associado l. Estudamos os níveis de energia do átomo de hidrogênio relativístico no formalismo da equação de Dirac no espaço NC para o campo de Coulomb. Demonstramos que no caso relativístico a não comutatividade quebra totalmente a degenerescência dos níveis 2S1/2; 2P1/2 e 2P3/2, abrindo novos canais de transição permitidos. Por fim construímos uma equação de onda não relativística para partículas de spin 1/2 através do limite não relativístico da equação de Dirac no espaço NC. Apresentamos um modelo pseudoclássico (à-la Berezin-Marinov) cuja quantização coincide com as equações de onda não relativísticas. Através da interação entre um spin não-relativístico e o campo magnético, através da equação de Pauli no espaço NC, construímos uma generalização para o modelo de Heisenberg para dois spins acoplados no espaço NC. Em tal modelo calculamos a amplitude de probabilidade de transição entre dois estados ortogonais do tipo EPR (Einstein-Podolsky-Rosen) submetidos em um campo magnético oscilatório e mostramos que, algumas de tais transições, que são proibidas no espaço comutativo são possíveis devido a não comutatividade do espaço. / The present PhD thesis refers to problems in field theory and quantum mechanics in noncommutative (NC) space. We study some well known physical systems in theoretical physics, such as the Maxwell theory in the presence of external sources, the Pauli equation, the Dirac equation with external fields and the relativistic Hydrogen atom. First we study the U(1)* gauge theory and extend the Seiberg-Witten map to include an external current and formulate classical field equations in NC space. Solutions in the vacuum and in an external magnetic field for a static charge of finite size a is determined. We find that a static charge in NC space, besides being an electric monopole, behaves as a magnetic dipole and the external magnetic field modifies the Coulomb law at large distances, as well as some electromagnetic form factors. In this direction we analyse the arbitrariness in the Seiberg-Witten map and show that, at least to the order studied here, this is equivalent to adding a homogeneous solution to the charge conservation condition. Demanding that the NC magnetic moment be less than the existing error in the measurement of leptons magnetic moment we obtain an upper bound for the NC parameter and its associated fundamental length l. In addition we consider the energy levels of a hydrogen-like atom in the framework of a -modified, due to space noncommutativity, Dirac equation with a Coulomb field. It is shown that the noncommutativity completely breaks the degeneracy of the 2S1/2; 2P1/2 and 2P3/2 levels, allowing for new transition channels. At last, but not least, we construct a nonrelativistic wave equation for spin 1/2 particles through the nonrelativistic limit of the NC Dirac equation. We present a pseudoclassical model (à-la Berezin-Marinov) whose quantization coincides with the nonrelativistic wave equations. By extracting the interaction between a nonrelativistic spin and the magnetic field, from the obtained Pauli equation in NC space, we construct a generalization of the Heisenberg model for two coupled spins in NC space. In such model, it is calculated the transition probability amplitude between two orthogonal EPR (Einstein-Podolsky-Rosen) states submitted in the presence of an oscilatory magnetic field and we shown that some of such transitions, which are forbidden in NC space are possible due to space noncommutativity.
4

Uncertainty Quantification for low-frequency Maxwell equations with stochastic conductivity models

Kamilis, Dimitrios January 2018 (has links)
Uncertainty Quantification (UQ) has been an active area of research in recent years with a wide range of applications in data and imaging sciences. In many problems, the source of uncertainty stems from an unknown parameter in the model. In physical and engineering systems for example, the parameters of the partial differential equation (PDE) that model the observed data may be unknown or incompletely specified. In such cases, one may use a probabilistic description based on prior information and formulate a forward UQ problem of characterising the uncertainty in the PDE solution and observations in response to that in the parameters. Conversely, inverse UQ encompasses the statistical estimation of the unknown parameters from the available observations, which can be cast as a Bayesian inverse problem. The contributions of the thesis focus on examining the aforementioned forward and inverse UQ problems for the low-frequency, time-harmonic Maxwell equations, where the model uncertainty emanates from the lack of knowledge of the material conductivity parameter. The motivation comes from the Controlled-Source Electromagnetic Method (CSEM) that aims to detect and image hydrocarbon reservoirs by using electromagnetic field (EM) measurements to obtain information about the conductivity profile of the sub-seabed. Traditionally, algorithms for deterministic models have been employed to solve the inverse problem in CSEM by optimisation and regularisation methods, which aside from the image reconstruction provide no quantitative information on the credibility of its features. This work employs instead stochastic models where the conductivity is represented as a lognormal random field, with the objective of providing a more informative characterisation of the model observables and the unknown parameters. The variational formulation of these stochastic models is analysed and proved to be well-posed under suitable assumptions. For computational purposes the stochastic formulation is recast as a deterministic, parametric problem with distributed uncertainty, which leads to an infinite-dimensional integration problem with respect to the prior and posterior measure. One of the main challenges is thus the approximation of these integrals, with the standard choice being some variant of the Monte-Carlo (MC) method. However, such methods typically fail to take advantage of the intrinsic properties of the model and suffer from unsatisfactory convergence rates. Based on recently developed theory on high-dimensional approximation, this thesis advocates the use of Sparse Quadrature (SQ) to tackle the integration problem. For the models considered here and under certain assumptions, we prove that for forward UQ, Sparse Quadrature can attain dimension-independent convergence rates that out-perform MC. Typical CSEM models are large-scale and thus additional effort is made in this work to reduce the cost of obtaining forward solutions for each sampling parameter by utilising the weighted Reduced Basis method (RB) and the Empirical Interpolation Method (EIM). The proposed variant of a combined SQ-EIM-RB algorithm is based on an adaptive selection of training sets and a primal-dual, goal-oriented formulation for the EIM-RB approximation. Numerical examples show that the suggested computational framework can alleviate the computational costs associated with forward UQ for the pertinent large-scale models, thus providing a viable methodology for practical applications.
5

Estudo de campo elétrico em linha de transmissão utilizando o método dos elementos de contorno

Silva Filho, Elson Borges da [UNESP] 28 March 2008 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:35Z (GMT). No. of bitstreams: 0 Previous issue date: 2008-03-28Bitstream added on 2014-06-13T20:49:17Z : No. of bitstreams: 1 silvafilho_eb_me_ilha.pdf: 1002165 bytes, checksum: 7b47e608bd37c2b8a03cccc84f847230 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Este trabalho analisa a aplicação em linhas de transmissão do método dos elementos de contorno para cálculo de potencial e campo elétrico, com um enfoque em eletrostática. O método dos elementos de contorno baseia-se numa formulação integral que elimina a discretização do domínio, restando apenas o contorno, permitindo o cálculo do potencial e do campo elétrico no contorno e na região estudada. O trabalho configura-se como uma revisão sobre eletrostática, ressaltando as equações de Laplace e Poisson, que serão utilizadas para encontrar as equações integrais do contorno. Há também vários tópicos relacionados ao campo elétrico de linhas de transmissão, bem como, ás normas brasileiras e recomendações internacionais que devem ser utilizadas no projeto de linhas de transmissão. O método dos elementos de contorno utiliza tais equações integrais para encontrar o potencial e o campo no contorno, e após conhecidos o potencial e o campo no contorno, pode-se aplicar o método em todo o domínio, obtendo o potencial e o campo. Para isso, apenas o contorno do domínio de interesse deve ser discretizado, o que trás uma enorme vantagem sobre os métodos que utilizam formulação diferencial. Neste trabalho, serão descritas as principais características do código computacional desenvolvido e suas sub-rotinas mais importantes. Para validar o programa, os resultados serão comparados com aqueles calculados por um procedimento analítico, sendo mostrada a eficiência da discretização do solo. São apresentados os resultados obtidos da análise do campo elétrico gerado por algumas silhuetas de linhas de transmissão. Os valores do campo elétrico gerado por estruturas compactas são comparados com estruturas convencionais e estruturas reduzidas (semi-compactas), também serão comparados os valores do gradiente de potencial na superfície dos condutores e suas capacitâncias equivalentes. / This paper analyses the application in transmission lines of the Boundary Element Method (BEM) of the calculation of potential and electric field, with a focus on electrostatic. The Boundary Element Method is based on an integral formulation that eliminates the discretisation of the domain, remaining only the contour, allowing the calculation of the potential and the electric field in the contour and in the region studied. The work is configured as revision on electrostatic, underscoring the equations of Laplace and Poisson, which will be used to find the integral equations of the contour. There are also several topics related to the electric field of transmission lines, as well as to the standards Brazilian and international recommendations to be used in the design of transmission lines. The Boundary Element Method uses such integral equations for finding the potential and electric field in the contour, and after having known the potential and electric field in the contour, the BEM can be applied in the whole domain, and getting the potential and electric field. Therefore, only the contours of the domain of interest should just be discretized, which backward an enormous advantage on the methods that use formulation differential. This paper will describe the main characteristics of computer code developed and their sub-routines more important. To validate the program, the results will be compared with those calculated by an analytic procedure, being shown the efficiency of discretisation of the soil. The results obtained from analysis of the electric field generated by some silhouettes of transmission lines are presented. The values of the electric field generated by compact structures are compared with conventional structures and reduced structures, also will be compared the values of the gradient of potential on the surface of the conductors and their equivalents capacitances.
6

Efeitos clássicos e quânticos em teorias não comutativas / Quantum and classical effects in noncomutative theories

Tiago Carlos Adorno de Freitas 14 January 2013 (has links)
A presente tese de Doutorado refere-se a problemas em teoria de campos e mecânica quântica no espaço não comutativo (NC). Abordamos alguns sistemas físicos bem estudados em física teórica, como a teoria de Maxwell na presença de fontes externas, equação de Pauli, equação de Dirac em campos externos e o espectro do átomo de hidrogênio relativístico. Como um primeiro problema estudamos a teoria de calibre U(1)* e extendemos o mapa de Seiberg-Witten para incluir uma corrente externa e formulamos equações clássicas para os campos no espaço não comutativo. Soluções no vácuo e em um campo magnético externo para uma carga estática de tamanho finito a foram determinadas. Encontramos que uma carga estática além de ser um monopolo elétrico comporta-se como um dipolo magnético e um campo magnético externo modifica o campo de Coulomb a longas distâncias bem como alguns fatores de forma eletromagnéticos, comportamentos inerentes a consideração de uma geometria NC. Nesta direção analisamos a ambiguidade no mapa de Seiberg-Witten e mostramos que, no mínimo até a ordem estudada aqui, isto é equivalente a ambiguidade de se adicionar uma solução homogênea à condição de conservação da corrente. Demandando que o momento magnético NC seja menor que o erro existente na medida do momento magnético de léptons, obtemos uma estimativa superior para o parâmetro e seu comprimento fundamental associado l. Estudamos os níveis de energia do átomo de hidrogênio relativístico no formalismo da equação de Dirac no espaço NC para o campo de Coulomb. Demonstramos que no caso relativístico a não comutatividade quebra totalmente a degenerescência dos níveis 2S1/2; 2P1/2 e 2P3/2, abrindo novos canais de transição permitidos. Por fim construímos uma equação de onda não relativística para partículas de spin 1/2 através do limite não relativístico da equação de Dirac no espaço NC. Apresentamos um modelo pseudoclássico (à-la Berezin-Marinov) cuja quantização coincide com as equações de onda não relativísticas. Através da interação entre um spin não-relativístico e o campo magnético, através da equação de Pauli no espaço NC, construímos uma generalização para o modelo de Heisenberg para dois spins acoplados no espaço NC. Em tal modelo calculamos a amplitude de probabilidade de transição entre dois estados ortogonais do tipo EPR (Einstein-Podolsky-Rosen) submetidos em um campo magnético oscilatório e mostramos que, algumas de tais transições, que são proibidas no espaço comutativo são possíveis devido a não comutatividade do espaço. / The present PhD thesis refers to problems in field theory and quantum mechanics in noncommutative (NC) space. We study some well known physical systems in theoretical physics, such as the Maxwell theory in the presence of external sources, the Pauli equation, the Dirac equation with external fields and the relativistic Hydrogen atom. First we study the U(1)* gauge theory and extend the Seiberg-Witten map to include an external current and formulate classical field equations in NC space. Solutions in the vacuum and in an external magnetic field for a static charge of finite size a is determined. We find that a static charge in NC space, besides being an electric monopole, behaves as a magnetic dipole and the external magnetic field modifies the Coulomb law at large distances, as well as some electromagnetic form factors. In this direction we analyse the arbitrariness in the Seiberg-Witten map and show that, at least to the order studied here, this is equivalent to adding a homogeneous solution to the charge conservation condition. Demanding that the NC magnetic moment be less than the existing error in the measurement of leptons magnetic moment we obtain an upper bound for the NC parameter and its associated fundamental length l. In addition we consider the energy levels of a hydrogen-like atom in the framework of a -modified, due to space noncommutativity, Dirac equation with a Coulomb field. It is shown that the noncommutativity completely breaks the degeneracy of the 2S1/2; 2P1/2 and 2P3/2 levels, allowing for new transition channels. At last, but not least, we construct a nonrelativistic wave equation for spin 1/2 particles through the nonrelativistic limit of the NC Dirac equation. We present a pseudoclassical model (à-la Berezin-Marinov) whose quantization coincides with the nonrelativistic wave equations. By extracting the interaction between a nonrelativistic spin and the magnetic field, from the obtained Pauli equation in NC space, we construct a generalization of the Heisenberg model for two coupled spins in NC space. In such model, it is calculated the transition probability amplitude between two orthogonal EPR (Einstein-Podolsky-Rosen) states submitted in the presence of an oscilatory magnetic field and we shown that some of such transitions, which are forbidden in NC space are possible due to space noncommutativity.
7

Conception optimale de circuits magnétiques dédiés à la propulsion spatiale électrique par des méthodes d'optimisation topologique / Optimal design of magnetic circuits dedicated to spatial electric propulsion by topology optimization methods

Sanogo, Satafa 01 February 2016 (has links)
Dans ces travaux, nous présentons des méthodes d'optimisation théoriques et numériques pour la conception optimale de circuits magnétiques pour propulseurs à effet Hall. Ces problèmes de conception sont des problèmes inverses très difficiles à résoudre que nous formulons sous forme de problèmes d'optimisation topologique. Les problèmes resultant sont non convexes avec des contraintes aux équations différentielles de Maxwell. Au cours de ces travaux, des approches originales ont été proposées afin de résoudre efficacement ces problèmes d'optimisation topologique. L'approche de densité de matériaux SIMP (Solid Isotropic Material with Penalization) qui est une variante de la méthode d'homogénéisation a été privilégiées. De plus, les travaux de ma thèse ont permis la mise en place de codes d'optimisation dénommé ATOP (Algorithm To Optimize Propulsion) utilisant en parallèle les logiciels de calculs scientifiques Matlab et d'élément finis FEMM (Finite Element Method Magnetics). Dans ATOP, nous utilisant à la fois des algorithmes d'optimisation locale de type descente basés sur une analyse de la sensibilité du problème et des algorithmes d'optimisation globale principalement de type Branch and Bound basés sur l'Arithmétique des Intervals. ATOP permettra d'optimiser à la fois la forme topologique des circuits magnétiques mais aussi le temps et le coût de production de nouvelles génération de propulseurs électriques. / In this work, we present theoretical and numerical optimization method for designing magnetic circuits for Hall effect thrusters. These design problems are very difficult inverse ones that we formulate under the form of topology optimization problems. Then, the obtained problems are non convex subject to Maxwell equations like constraints. Some original approaches have been proposed to solve efficiently these topology optimization problems. These approaches are based on the material density model called SIMP approach (Solid Isotropic Material with Penalization) which is a variante of the homogenization method. The results in my thesis allowed to provide optimization source code named ATOP (Algorithm To Optimize Propulsion) unsung in parallel two scientific computing softwares namely Matlab and FEMM (Finite Element Method Magnetics). In ATOP, we use both local optimization algorithms based on sensitivity analysis of the design problem; and global optimization algorithms mainly of type Branch and Bound based on Interval Arithmetic analysis. ATOP will help to optimize both the topological shape of the magnetic circuits and the time and cost of production (design process) of new generations of electrical thrusters.
8

Estudo de campo elétrico em linha de transmissão utilizando o método dos elementos de contorno /

Silva Filho, Elson Borges da. January 2008 (has links)
Orientador: Luiz Fernando Bovolato / Banca: Sérgio Kurokawa / Banca: Afonso José do Prado / Resumo: Este trabalho analisa a aplicação em linhas de transmissão do método dos elementos de contorno para cálculo de potencial e campo elétrico, com um enfoque em eletrostática. O método dos elementos de contorno baseia-se numa formulação integral que elimina a discretização do domínio, restando apenas o contorno, permitindo o cálculo do potencial e do campo elétrico no contorno e na região estudada. O trabalho configura-se como uma revisão sobre eletrostática, ressaltando as equações de Laplace e Poisson, que serão utilizadas para encontrar as equações integrais do contorno. Há também vários tópicos relacionados ao campo elétrico de linhas de transmissão, bem como, ás normas brasileiras e recomendações internacionais que devem ser utilizadas no projeto de linhas de transmissão. O método dos elementos de contorno utiliza tais equações integrais para encontrar o potencial e o campo no contorno, e após conhecidos o potencial e o campo no contorno, pode-se aplicar o método em todo o domínio, obtendo o potencial e o campo. Para isso, apenas o contorno do domínio de interesse deve ser discretizado, o que trás uma enorme vantagem sobre os métodos que utilizam formulação diferencial. Neste trabalho, serão descritas as principais características do código computacional desenvolvido e suas sub-rotinas mais importantes. Para validar o programa, os resultados serão comparados com aqueles calculados por um procedimento analítico, sendo mostrada a eficiência da discretização do solo. São apresentados os resultados obtidos da análise do campo elétrico gerado por algumas silhuetas de linhas de transmissão. Os valores do campo elétrico gerado por estruturas compactas são comparados com estruturas convencionais e estruturas reduzidas (semi-compactas), também serão comparados os valores do gradiente de potencial na superfície dos condutores e suas capacitâncias equivalentes. / Abstract: This paper analyses the application in transmission lines of the Boundary Element Method (BEM) of the calculation of potential and electric field, with a focus on electrostatic. The Boundary Element Method is based on an integral formulation that eliminates the discretisation of the domain, remaining only the contour, allowing the calculation of the potential and the electric field in the contour and in the region studied. The work is configured as revision on electrostatic, underscoring the equations of Laplace and Poisson, which will be used to find the integral equations of the contour. There are also several topics related to the electric field of transmission lines, as well as to the standards Brazilian and international recommendations to be used in the design of transmission lines. The Boundary Element Method uses such integral equations for finding the potential and electric field in the contour, and after having known the potential and electric field in the contour, the BEM can be applied in the whole domain, and getting the potential and electric field. Therefore, only the contours of the domain of interest should just be discretized, which backward an enormous advantage on the methods that use formulation differential. This paper will describe the main characteristics of computer code developed and their sub-routines more important. To validate the program, the results will be compared with those calculated by an analytic procedure, being shown the efficiency of discretisation of the soil. The results obtained from analysis of the electric field generated by some silhouettes of transmission lines are presented. The values of the electric field generated by compact structures are compared with conventional structures and reduced structures, also will be compared the values of the gradient of potential on the surface of the conductors and their equivalents capacitances. / Mestre

Page generated in 0.0687 seconds