• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 37
  • 12
  • 10
  • 10
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Proactive university library book recommender system

Mekonnen, Tadesse Zewdu January 2021 (has links)
M. Tech. (Department of Information Communication Technology, Faculty of Applied and Computer Sciences), Vaal University of Technology. / Too many options on the internet are the reason for the information overload problem to obtain relevant information. A recommender system is a technique that filters information from large sets of data and recommends the most relevant ones based on people‟s preferences. Collaborative and content-based techniques are the core techniques used to implement a recommender system. A combined use of both collaborative and content-based techniques called hybrid techniques provide relatively good recommendations by avoiding common problems arising from each technique. In this research, a proactive University Library Book Recommender System has been proposed in which hybrid filtering is used for enhanced and more accurate recommendations. The prototype designed was able to recommend the highest ten books for each user. We evaluated the accuracy of the results using Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). A measure value of 0.84904 MAE and 0.9579 RMSE found by our system shows that the combined use of both techniques gives an improved prediction accuracy for the University Library Book Recommender System.
32

Low Decoding Complexity Space-Time Block Codes For Point To Point MIMO Systems And Relay Networks

Rajan, G Susinder 07 1900 (has links)
It is well known that communication using multiple antennas provides high data rate and reliability. Coding across space and time is necessary to fully exploit the gains offered by multiple input multiple output (MIMO) systems. One such popular method of coding for MIMO systems is space-time block coding. In applications where the terminals do not have enough physical space to mount multiple antennas, relaying or cooperation between multiple single antenna terminals can help achieve spatial diversity in such scenarios as well. Relaying techniques can also help improve the range and reliability of communication. Recently it has been shown that certain space-time block codes (STBCs) can be employed in a distributed fashion in single antenna relay networks to extract the same benefits as in point to point MIMO systems. Such STBCs are called distributed STBCs. However an important practical issue with STBCs and DSTBCs is its associated high maximum likelihood (ML) decoding complexity. The central theme of this thesis is to systematically construct STBCs and DSTBCs applicable for various scenarios such that are amenable for low decoding complexity. The first part of this thesis provides constructions of high rate STBCs from crossed product algebras that are minimum mean squared error (MMSE) optimal, i.e., achieves the least symbol error rate under MMSE reception. Moreover several previous constructions of MMSE optimal STBCs are found to be special cases of the constructions in this thesis. It is well known that STBCs from orthogonal designs offer single symbol ML decoding along with full diversity but the rate of orthogonal designs fall exponentially with the number of transmit antennas. Thus it is evident that there exists a tradeoff between rate and ML decoding complexity of full diversity STBCs. In the second part of the thesis, a definition of rate of a STBC is proposed and the problem of optimal tradeoff between rate and ML decoding complexity is posed. An algebraic framework based on extended Clifford algebras is introduced to study the optimal tradeoff for a class of multi-symbol ML decodable STBCs called ‘Clifford unitary weight (CUW) STBCs’ which include orthogonal designs as a special case. Code constructions optimally meeting this tradeoff are also obtained using extended Clifford algebras. All CUW-STBCs achieve full diversity as well. The third part of this thesis focusses on constructing DSTBCs with low ML decoding complexity for two hop, amplify and forward based relay networks under various scenarios. The symbol synchronous, coherent case is first considered and conditions for a DSTBC to be multi-group ML decodable are first obtained. Then three new classes of four-group ML decodable full diversity DSTBCs are systematically constructed for arbitrary number of relays. Next the symbol synchronous non-coherent case is considered and full diversity, four group decodable distributed differential STBCs (DDSTBCs) are constructed for power of two number of relays. These DDSTBCs have the best error performance compared to all previous works along with low ML decoding complexity. For the symbol asynchronous, coherent case, a transmission scheme based on orthogonal frequency division multiplexing (OFDM) is proposed to mitigate the effects of timing errors at the relay nodes and sufficient conditions for a DSTBC to be applicable in this new transmission scheme are given. Many of the existing DSTBCs including the ones in this thesis are found to satisfy these sufficient conditions. As a further extension, differential encoding is combined with the proposed transmission scheme to arrive at a new transmission scheme that can achieve full diversity in symbol asynchronous, non-coherent relay networks with no knowledge of the timing errors at the relay nodes. The DDSTBCs in this thesis are proposed for application in the proposed transmission scheme for symbol asynchronous, non-coherent relay networks. As a parallel to the non-coherent schemes based on differential encoding, we also propose non-coherent schemes for symbol synchronous and symbol asynchronous relay networks that are based on training. This training based transmission scheme leverages existing coherent DSTBCs for non-coherent communication in relay networks. Simulations show that this training scheme when used along with the coherent DSTBCs in this thesis outperform the best known DDSTBCs in the literature. Finally, in the last part of the thesis, connections between multi-group ML decodable unitary weight (UW) STBCs and groups with real elements are established for the first time. Using this connection, we translate the necessary and sufficient conditions for multi-group ML decoding of UW-STBCs entirely in group theoretic terms. We discuss various examples of multi-group decodable UW-STBCs together with their associated groups and list the real elements involved. These examples include orthogonal designs, quasi-orthogonal designs among many others.
33

Near-capacity sphere decoder based detection schemes for MIMO wireless communication systems

Kapfunde, Goodwell January 2013 (has links)
The search for the closest lattice point arises in many communication problems, and is known to be NP-hard. The Maximum Likelihood (ML) Detector is the optimal detector which yields an optimal solution to this problem, but at the expense of high computational complexity. Existing near-optimal methods used to solve the problem are based on the Sphere Decoder (SD), which searches for lattice points confined in a hyper-sphere around the received point. The SD has emerged as a powerful means of finding the solution to the ML detection problem for MIMO systems. However the bottleneck lies in the determination of the initial radius. This thesis is concerned with the detection of transmitted wireless signals in Multiple-Input Multiple-Output (MIMO) digital communication systems as efficiently and effectively as possible. The main objective of this thesis is to design efficient ML detection algorithms for MIMO systems based on the depth-first search (DFS) algorithms whilst taking into account complexity and bit error rate performance requirements for advanced digital communication systems. The increased capacity and improved link reliability of MIMO systems without sacrificing bandwidth efficiency and transmit power will serve as the key motivation behind the study of MIMO detection schemes. The fundamental principles behind MIMO systems are explored in Chapter 2. A generic framework for linear and non-linear tree search based detection schemes is then presented Chapter 3. This paves way for different methods of improving the achievable performance-complexity trade-off for all SD-based detection algorithms. The suboptimal detection schemes, in particular the Minimum Mean Squared Error-Successive Interference Cancellation (MMSE-SIC), will also serve as pre-processing as well as comparison techniques whilst channel capacity approaching Low Density Parity Check (LDPC) codes will be employed to evaluate the performance of the proposed SD. Numerical and simulation results show that non-linear detection schemes yield better performance compared to linear detection schemes, however, at the expense of a slight increase in complexity. The first contribution in this thesis is the design of a near ML-achieving SD algorithm for MIMO digital communication systems that reduces the number of search operations within the sphere-constrained search space at reduced detection complexity in Chapter 4. In this design, the distance between the ML estimate and the received signal is used to control the lower and upper bound radii of the proposed SD to prevent NP-complete problems. The detection method is based on the DFS algorithm and the Successive Interference Cancellation (SIC). The SIC ensures that the effects of dominant signals are effectively removed. Simulation results presented in this thesis show that by employing pre-processing detection schemes, the complexity of the proposed SD can be significantly reduced, though at marginal performance penalty. The second contribution is the determination of the initial sphere radius in Chapter 5. The new initial radius proposed in this thesis is based on the variable parameter α which is commonly based on experience and is chosen to ensure that at least a lattice point exists inside the sphere with high probability. Using the variable parameter α, a new noise covariance matrix which incorporates the number of transmit antennas, the energy of the transmitted symbols and the channel matrix is defined. The new covariance matrix is then incorporated into the EMMSE model to generate an improved EMMSE estimate. The EMMSE radius is finally found by computing the distance between the sphere centre and the improved EMMSE estimate. This distance can be fine-tuned by varying the variable parameter α. The beauty of the proposed method is that it reduces the complexity of the preprocessing step of the EMMSE to that of the Zero-Forcing (ZF) detector without significant performance degradation of the SD, particularly at low Signal-to-Noise Ratios (SNR). More specifically, it will be shown through simulation results that using the EMMSE preprocessing step will substantially improve performance whenever the complexity of the tree search is fixed or upper bounded. The final contribution is the design of the LRAD-MMSE-SIC based SD detection scheme which introduces a trade-off between performance and increased computational complexity in Chapter 6. The Lenstra-Lenstra-Lovasz (LLL) algorithm will be utilised to orthogonalise the channel matrix H to a new near orthogonal channel matrix H ̅.The increased computational complexity introduced by the LLL algorithm will be significantly decreased by employing sorted QR decomposition of the transformed channel H ̅ into a unitary matrix and an upper triangular matrix which retains the property of the channel matrix. The SIC algorithm will ensure that the interference due to dominant signals will be minimised while the LDPC will effectively stop the propagation of errors within the entire system. Through simulations, it will be demonstrated that the proposed detector still approaches the ML performance while requiring much lower complexity compared to the conventional SD.
34

Employing Bayesian Vector Auto-Regression (BVAR) method as an altenative technique for forecsating tax revenue in South Africa

Molapo, Mojalefa Aubrey 11 1900 (has links)
Statistics / M. Sc. (Statistics)
35

Advances and Applications of Experimental Measures to Test Behavioral Saving Theories and a Method to Increase Efficiency in Binary and Multiple Treatment Assignment

Schneider, Sebastian Olivier 24 November 2017 (has links)
No description available.
36

Caractérisation des limites fondamentales de l'erreur quadratique moyenne pour l'estimation de signaux comportant des points de rupture / Characterization of mean squared error fundamental limitations in parameter estimation of signals with change-points

Bacharach, Lucien 28 September 2018 (has links)
Cette thèse porte sur l'étude des performances d'estimateurs en traitement du signal, et s'attache en particulier à étudier les bornes inférieures de l'erreur quadratique moyenne (EQM) pour l'estimation de points de rupture, afin de caractériser le comportement d'estimateurs, tels que celui du maximum de vraisemblance (dans le contexte fréquentiste), mais surtout du maximum a posteriori ou de la moyenne conditionnelle (dans le contexte bayésien). La difficulté majeure provient du fait que, pour un signal échantillonné, les paramètres d'intérêt (à savoir les points de rupture) appartiennent à un espace discret. En conséquence, les résultats asymptotiques classiques (comme la normalité asymptotique du maximum de vraisemblance) ou la borne de Cramér-Rao ne s'appliquent plus. Quelques résultats sur la distribution asymptotique du maximum de vraisemblance provenant de la communauté mathématique sont actuellement disponibles, mais leur applicabilité à des problèmes pratiques de traitement du signal n'est pas immédiate. Si l'on décide de concentrer nos efforts sur l'EQM des estimateurs comme indicateur de performance, un travail important autour des bornes inférieures de l'EQM a été réalisé ces dernières années. Plusieurs études ont ainsi permis de proposer des inégalités plus précises que la borne de Cramér-Rao. Ces dernières jouissent en outre de conditions de régularité plus faibles, et ce, même en régime non asymptotique, permettant ainsi de délimiter la plage de fonctionnement optimal des estimateurs. Le but de cette thèse est, d'une part, de compléter la caractérisation de la zone asymptotique (en particulier lorsque le rapport signal sur bruit est élevé et/ou pour un nombre d'observations infini) dans un contexte d'estimation de points de rupture. D'autre part, le but est de donner les limites fondamentales de l'EQM d'un estimateur dans la plage non asymptotique. Les outils utilisés ici sont les bornes inférieures de l’EQM de la famille Weiss-Weinstein qui est déjà connue pour être plus précise que la borne de Cramér-Rao dans les contextes, entre autres, de l’analyse spectrale et du traitement d’antenne. Nous fournissons une forme compacte de cette famille dans le cas d’un seul et de plusieurs points de ruptures puis, nous étendons notre analyse aux cas où les paramètres des distributions sont inconnus. Nous fournissons également une analyse de la robustesse de cette famille vis-à-vis des lois a priori utilisées dans nos modèles. Enfin, nous appliquons ces bornes à plusieurs problèmes pratiques : données gaussiennes, poissonniennes et processus exponentiels. / This thesis deals with the study of estimators' performance in signal processing. The focus is the analysis of the lower bounds on the Mean Square Error (MSE) for abrupt change-point estimation. Such tools will help to characterize performance of maximum likelihood estimator in the frequentist context but also maximum a posteriori and conditional mean estimators in the Bayesian context. The main difficulty comes from the fact that, when dealing with sampled signals, the parameters of interest (i.e., the change points) lie on a discrete space. Consequently, the classical large sample theory results (e.g., asymptotic normality of the maximum likelihood estimator) or the Cramér-Rao bound do not apply. Some results concerning the asymptotic distribution of the maximum likelihood only are available in the mathematics literature but are currently of limited interest for practical signal processing problems. When the MSE of estimators is chosen as performance criterion, an important amount of work has been provided concerning lower bounds on the MSE in the last years. Then, several studies have proposed new inequalities leading to tighter lower bounds in comparison with the Cramér-Rao bound. These new lower bounds have less regularity conditions and are able to handle estimators’ MSE behavior in both asymptotic and non-asymptotic areas. The goal of this thesis is to complete previous results on lower bounds in the asymptotic area (i.e. when the number of samples and/or the signal-to-noise ratio is high) for change-point estimation but, also, to provide an analysis in the non-asymptotic region. The tools used here will be the lower bounds of the Weiss-Weinstein family which are already known in signal processing to outperform the Cramér-Rao bound for applications such as spectral analysis or array processing. A closed-form expression of this family is provided for a single and multiple change points and some extensions are given when the parameters of the distributions on each segment are unknown. An analysis in terms of robustness with respect to the prior influence on our models is also provided. Finally, we apply our results to specific problems such as: Gaussian data, Poisson data and exponentially distributed data.
37

區間時間序列預測及其準確度分析 / Time series analysis and forecasting evaluation with interval data

徐惠莉, Hsu, Hui-Li Unknown Date (has links)
近年來隨著科技的進步與工商業的發展,預測技術的創新與改進愈來愈受到重視。相對地,對於預測準確度的要求也愈來愈高。尤其在經濟建設、經營規畫、管理控制等問題上,預測更是決策過程中不可或缺的重要資訊。然而僅用單一數值形式收集來的資料,其建立的模式是不足以描述每日或每月的發展趨勢。因為有太多模糊且不完整訊息,以致於無法用傳統以點資料建構的系統來進行預測。基於點預測的不確定性,因此嘗試以區間資料來建構模式並進行預測。本論文探討區間時間序列之動態走勢及預測結果之效率性,共三部份,分別為區間時間序列之分析與預測、區間預測準確度之探討和計算區間資料的相關係數。 第一部份,利用區間具有糢糊數的特質,將其分解成區間平均數及區間長度,提出區間時間數列建構過程及預測方法,如區間移動平均、區間加權移動平均、ARIMA區間預測等方法。並藉由模擬方式設計出數組穩定及非穩定之區間時間數列,再利用本文所提出的區間預測方法進行預測。根據這些計算預測結果效率性的方法,發現ARIMA區間預測,提供了較傳統的預測方法更為準確及具有彈性的預測結果。 第二部份,我們特別針對區間預測結果的準確度提出效率性的分析,如平均區間預測誤差平方和、平均相對區間誤差及平均XOR比率。而在預測效率性的實證分析上,平均XOR比率能給與決策者更正確的資訊,做出更客觀的判斷。 第三部份,在探討如何將區間資料應用在計算相關係數。利用單一數值資料的收集 ,並以傳統的相關係數r來說明兩變數之間是否相關? 是較為便利且易懂的統計方法。但資料是否足以代表母體特性?這樣求出來的相關係數值會不會太主觀?有鑑於此,以區間就是模糊數的概念,建構模糊相關係數。最後舉出應用實例,比較模糊相關係數與傳統的相關係數的差異性,在說明兩變數關係的強弱程度,模糊相關係數提供了一個較有彈性的統計分析方法。 / Point forecasting provides important information during decision-making processes, especially in economic developments, population policies, management planning or financial controls. Nevertheless, the forecasting model constructed only by single values may not demonstrate the whole trend of a daily or monthly process. Since there are so many unpredictable and continuous fluctuations on the process to be predicted, the observed values are discrete instantaneous values which are insufficient to represent the true process. Therefore, the collected information is generally vague and incomplete so that the real number system is not sufficient to express the forecasting model. In additional, due to the business marketing is full of uncertainty and the continuous fluctuations, intervals are used to express and establish the forecasting model to estimate the prediction values. This dissertation investigates the dynamic trend of interval time series and the performance evaluation of interval forecasting. It consists of three parts: the analysis and forecasting of interval time series, the evaluation of forecasting performance for interval data, and the calculation of the fuzzy correlation coefficient. First of all, we propose the conception of fuzzy for interval and propose interval forecasting approaches, such as the interval moving average, the weighted interval moving average, and ARIMA interval forecasting. The soft computing technique as well as the model simulation is used to carry out the interval forecasting. The forecast results are compared by the mean squared interval error and the mean relative interval error. Finally, we take two practical cases study. By the comparison of forecasting performance, it is found that ARIMA interval forecasting provides more efficiency and flexibility than the traditional ones do. Secondly, we concentrated on the forecasting performance evaluation for interval data. The evaluation techniques are developed to determine the validity of the forecast results. The forecast results are compared by three criteria which are the mean squared error of interval, mean relative interval error, and the mean ratio of exclusive-or. It is found that the empirical studies show that the mean ratio of exclusive-or can provide a more objective suggestion in interval forecasting for policymakers. The third part considers the evaluation of the correlation coefficient interval by collecting sample data whose types are real and interval. When an interval is considered as a fuzzy number, the aspect of fuzzy can be utilized to construct the fuzzy correlation coefficient for interval data. As compared with the traditional correlation coefficient, the fuzzy correlation coefficient can demonstrate conservative correlation coefficient and provide an objective statistical method for discovering the correlation between two variables.

Page generated in 0.435 seconds