• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 898
  • 677
  • 217
  • 174
  • 125
  • 23
  • 20
  • 17
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 12
  • Tagged with
  • 2799
  • 2799
  • 629
  • 531
  • 465
  • 315
  • 250
  • 249
  • 238
  • 229
  • 217
  • 212
  • 208
  • 187
  • 157
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Influence of design and coatings on the mechanical reliability of semiconductor wafers.

Yoder, Karl J. 08 1900 (has links)
We investigate some of the mechanical design factors of wafers and the effect on strength. Thin, solid, pre-stressed films are proposed as a means to improve the bulk mechanical properties of a wafer. Three-point bending was used to evaluate the laser scribe density and chemical processing effect on wafer strength. Drop and strike tests were employed to investigate the edge bevel profile effect on the mechanical properties of the wafer. To characterize the effect of thin films on strength, one-micron ceramic films were deposited on wafers using PECVD. Coated samples were prepared by cleaving and were tested using four-point bending. Film adhesion was characterized by notched four-point bending. RBS and FTIR were used to obtain film chemistry, and nanoindentation was used to investigate thin film mechanical properties. A stress measurement gauge characterized residual film stress. Mechanical properties of the wafers correlated to the residual stress in the film.
252

Production, characterization and testing of Tempered Martensite Assisted Steels (TMAS) obtained via subcritical annealing of cold rolled TRIP steels

Jayaraman, Vikram. January 2007 (has links)
No description available.
253

Effect of fiber/Matrix Interphase on the Long Term Behavior of Cross-Ply Laminates

Subramanian, Suresh 25 January 2008 (has links)
A systematic study was conducted to examine the influence of fiber surface treatment and sizing on the formation of fiber-matrix interphase and its effects n the mechanical properties of composite laminates. Three material systems having the same Apollo graphite fibers and HC 9106-3 toughened epoxy matrix, but with different fiber surface treatments and sizings were used in this study. The fibers used in the 810A and 820 A systems received 100% and 200% industry standard surface treatments respectively and were sized with Bisphenol-A unreacted epoxy material. The 810 O system was manufactured with 100% surface treated fibers that were sized with pvp (polyvinylpyrrolidone), a thermoplastic material. The presence of different interphase in these materials was confirmed using a permanganic etching technique. Results indicate that the interphase is discontinuous and made of linear chain polymeric material in the 810 A system. The interphase in the 810 O system has a gradient morphology while the 820 A system does not possess a well defined interphase. Mechanical test results indicate that the 810 O system significantly greater longitudinal tensile strength and failure strain compared to the 810 A system. The 810 A and 820 A systems have similar longitudinal tensile properties. Transverse tensile test results indicate that the 820 A system has the highest strength while the 810 O system has the lowest strength. The (0,90₃), cross-ply laminates from the three material systems exhibit different damage mechanisms and failure modes under monotonic tensile loading. Fatigue test results indicate that the 810 O laminates have longer fatigue lives at higher load levels and shorter fatigue lives at lower load levels compared to the 810 A laminates. The 820 A laminates have longer life compared to the other two materials systems, at all three load levels. The 810 O material exhibits greater damage and stiffness reduction than the other two materials. The 810 A and 820 A systems exhibit a brittle stress concentration controlled failure, while the pvp sized 810 O system exhibits a global strain conuolled failure. A micromechanics model was developed to investigate the role of the interphase on the tensile strength of unidirectional laminates. A new parameter called the ‘efficiency of the interface’, is introduced in the model. A simple scheme that uses the experimentally determined tensile modulus of unidirectional laminates in a concentric cylinders model, is described to estimate the interfacial efficiency. The tensile fatigue performance of cross-ply laminates is predicted using this micromechanics model in a cumulative damage scheme. The predicted fatigue lives and failure modes agree well with experimental results. / Ph. D.
254

In situ composites of compatibilized polypropylene/liquid crystalline polymer blends

O'Donnell, Hugh J. 05 February 2007 (has links)
Methods of processing polypropylene (PP)/ liquid crystalline polymer blends to obtain high mechanical properties from injection molded samples were investigated in this dissertation. Three liquid crystalline polymers (LCPs), two liquid crystalline (LC) copolyesters and one LC poly(ester-amide), were used. The PP/LCP blends were compatibilized with a maleic anhydride grafted polypropylene (MAP) to enhance the mechanical properties. The effect of increasing MAP content on the mechanical properties, morphology, and interfacial tension of injection molded tensile bars and plaques made from blends with 30 wt% LCP was investigated. It was determined that MAP enhances both the tensile strength and modulus, but the tensile strength is increased to a greater degree than the tensile modulus. For the LC copolyesters, the tensile strength appeared to reach a maximum while for the LC poly(ester-amide) the tensile strength increased without limit in the range of MAP contents studied. Simultaneously, a finer dispersion was created as the MAP content was increased. Calculation of the interfacial tension from contact angle measurements indicated that the interfacial tension decreased as MAP was added to the PP matrix. Analysis of the MAP concentration after blending indicated that MAP did not react with the LCP, but enhanced tensile properties resulted from physical interaction such as hydrogen bonding. This mechanism is consistent with the greater property improvements found in the LC poly(ester-amide) blends where the amide group is expected to undergo stronger hydrogen bonding than the ester group. Analysis of the injection molding of these blends found that heat transfer and solidification significantly affected the flexural modulus of these blends. Injection molding conditions such as fill time, mold thickness, mold temperature and melt temperature were investigated in three molds of different thicknesses. Different processing relationships were found between the LC copolyesters and the LC poly(ester-amide). For the former LCP blends, the highest moduli were obtained from the thinnest mold in a manner parallel to that of the moduli of neat LCPs. For the latter LCP blends, the highest moduli were obtained in the intermediate thickness mold. The differences between the copolyester and LC poly(ester-amide)s processing / property relationships were related to the melt rheology of the LCPs. For the LC copolyesters, maximum mechanical properties were obtained when the melt temperature was selected so that the storage and loss moduli of the LCP were nearly equal. This equality of storage and loss moduli could not be achieved with the LC poly(ester-amide). In addition, upon cooling, the storage and loss moduli of the LC poly(ester-amide) indicated that rapid solidification occurred while a much lower rate of solidification was indicated for the LC copolyesters. In addition the mechanical properties were sensitive to the rate of cooling as indicated by the Graetz number. It was speculated that attainment of the highest mechanical properties was related to the LCP being deformed during the filling stage followed by rapid solidification of the LCP morphology upon cessation of flow. / Ph. D.
255

Effects of fiber type on the tribological behavior of polyamide composites

Weick, Brian L. 19 October 2006 (has links)
An experimental and analytical study of the tribological behavior of polymer composites is presented. Glass, aramid, and carbon fiber-filled polyamide (Nylon 6,6) composites serve as models for understanding friction and wear processes encountered when polymer composites are used in tribological applications. Experimental results not only include measurements of friction and wear, but surface temperatures produced by frictional processes during oscillating contact experiments. Since an optically flat, transparent sapphire disk is used as the oscillating countersurface, surface temperatures can be measured directly at the interface using an infrared microscope. Experimental results show that the presence of fibers in the polyamide matrix lowers wear, friction, and surface temperature when compared with the unfilled polymer. Rationale for this improved tribological behavior is presented and discussed. Fiber-type is shown to have a direct influence on the tribological behavior of the polymer composite, and the chemical behavior at and near the interface is shown to be significant by examining worn and transferred material through surface analytical techniques. In particular, evidence is presented for the tribochemical degradation of intramolecular bonds in the polyamide macromolecule. Measurements of surface temperatures are compared with theoretical predictions using models for the real area(s) of contact, and results from “scanning” experiments are also presented in which the infrared microscope is used to measure surface temperatures at possible real areas of contact within the apparent contact region. Instantaneous measurements of surface temperature and friction over a single cycle of motion are also presented which allows for the performance of a frequency domain analysis. This technique not only shows the frequency content of the friction and surface temperature signals, but it also shows correlations between these two parameters. The role of intermolecular attractions in frictional processes is addressed, and evidence for relatively strong intermolecular attractions between the polyamide surface and sapphire disk is discussed. / Ph. D.
256

A study of internal friction in a high chromium-high nickel stainless steel

York, John W. January 1963 (has links)
Relaxation spectra were determined for a high chromium-high nickel vacuum cast stainless steel. The specimens were tested in the following three conditions: (1) as-received and solution heat treated, (2) nitrided 20 hours and solution heat treated, and (3) nitrided 40 hours and solution heat treated. No internal friction peaks were found in any of the experimental runs. There was no precipitation of nitrides during testing in the torsional pendulum. This was verified by an electron microscopic examination of the specimens after testing. Since there were no nitrides precipitated, no internal friction relaxation peaks were evident. / M.S.
257

Flexural behavior of a glass fiber reinforced wood fiber composite

Smulski, Stephen John January 1985 (has links)
The static and dynamic flexural properties of a wood fiber matrix internally reinforced with continuous glass fibers were investigated. When modelled as a sandwich composite, the static flexural modulus of elasticity (MOE) of glass fiber reinforced hardboard could be successfully predicted from the static flexural MOE of the wood fiber matrix, and the tensile MOE and effective volume fraction of the glass fiber reinforcement. Under the same assumption, the composite modulus of rupture (MOR) is a function of the reinforcement tensile MOE and effective volume fraction, and the matrix stress at failure. The composite MOR was predicted on this basis with limited success. The static flexural modulus of elasticity, dynamic modulus of elasticity, and modulus of rupture of glass fiber reinforced hardboard increased with increasing effective reinforcement volume fraction. The logarithmic decrement of the composite decreased with increasing effective reinforcement volume fraction. Excellent linear correlation found among flexural properties determined in destructive static tests and nondestructive dynamic tests demonstrated the usefulness of dynamic test methods for flexural property evaluation. The short-term flexural creep behavior of glass fiber reinforced hardboard was accurately described by a 4-element linear viscoelastic model. Excellent agreement existed between predicted and observed creep deflections based on nonlinear regression estimates of model parameters. / Ph. D.
258

A Mechanics Framework for Modeling Fiber Deformation on Draw Rollers and Freespans

Vohra, Sanjay 18 May 2006 (has links)
In a fiber spinning process molten polymer is extruded into a fiber. The resulting fiber known as as-spun fiber is relatively weak and shows a large plastic central zone in its constitutive behavior. As a result the fiber deforms substantially without a significant change in load thus making it unsuitable for stress bearing applications. The range of plastic deformation is related to the natural draw ratio. In order to improve the mechanical properties of as spun fibers, fiber spinning is followed by a fiber draw process. With multi stage draw the as-spun fiber is drawn beyond the plastic region in various drawing zones which produces greater orientation of the polymer chains in the axial direction of the fiber thus enhancing mechanical strength characteristics of the fiber. The multistage draw process consists of several rollers each rotating at a speed greater than the one prior to it. The objective of this work is to develop a first approximation to model fiber draw in the multistage drawing process, with and without a draw pin. As the first step the slippage of fibers on rollers was analysed by including centrifugal acceleration and acceleration due to stretching. The draw in a free span is also modelled. Several representative draw processes were examined. It was found draw pin localizes the draw significantly although the resulting mechanical unloading complicates the analysis. Draw in the free span is impossible for isothermal draw processes, and anisothermal draw induces thermal unloading in the system. A comprehensive analysis of various draw processes will be examined.
259

Properties of titanium matrix composites reinforced with titanium boride powders

Yuan, Fei (Fred), Materials Science & Engineering, Faculty of Science, UNSW January 2007 (has links)
Metal matrix composites can produce mechanical and physical properties better than those of the monolithic metal. Titanium alloys are widely used matrix materials as they can offer outstanding specific strength, corrosion resistance and other advantages over its competitors, such as aluminium, magnesium and stainless steel. In past decades, titanium matrix composites served in broad areas, including aerospace, military, automobile and biomedical industries. In this project, a revised powder metallurgy method, which contains cold isostatic pressing and hot isostatic pressing, was adopted to refine the microstructure of monolithic titanium. It was also used to manufacture titanium matrix composites. TiH2 powder was selected as the starting material to form Ti matrix and the reinforcements were sub-micron and nano-metric TiB particles. Mechanical properties and microstructure of commercial titanium composites exhaust valves from Toyota Motor Corporation have been studied as the reference of properties of titanium composites manufactured in this project. It has been shown that tensile strength and hardness of exhaust valves increase about 30% than those of similar matrix titanium alloys. Examination on powder starting materials of this project was also carried out, especially the dehydrogenation process shown in the DSC result. Mechanical properties and microstructures of titanium matrix composites samples in this project, as related to the process parameter, have also been investigated. The density of these samples reached 96% of theoretical one but cracks were found through out the samples after sintering. Fast heating rates during the processing was suspected to have caused the crack formation, since the hydrogen release was too fast during dehydrogenation. Hardness testing of sintered samples was carried out and the value was comparable and even better than that of commercial exhaust valves and titanium composites in literature. Microstructure study shows that the size of reinforcements increased and the size of grains decreased as the increasing amount of TiB reinforcements. And this condition also resulted in the increasing amount of the acicular alpha structure.
260

Rheocasting of Aluminium Alloys : Slurry Formation, Microstructure, and Properties

Payandeh, Mostafa January 2015 (has links)
Innovative materials with novel properties are in great demand for use in the criticalcomponents of emerging technologies, which promise to be more cost-effective and energyefficient.A controversial issue with regard to manufacturing complex industrial products isto develop advanced materials with optimised manufacturability in addition to the requiredmechanical and physical properties. The objective of this research study was to develop andoffer new solutions in material-processing-related issues in the field of mechanical andelectrical engineering. This was achieved by investigating the new opportunities affordedby a recently developed rheocasting method, RheoMetalTM process, with the goal of comingto an understanding of the critical factors for effective manufacturing process. A study of the evolution of microstructure at different stages of the rheocasting process,demonstrated the influence of multistage solidification on the microstructural characteristicsof the rheocast components. The microstructural investigation onquench slurry showed itconsists of the solute-lean coarse globular α-Al particles with uniform distribution ofalloying elements, suspended in the solute-rich liquid matrix. Such inhomogeneous slurryin the sleeve seems to play a critical role in the inhomogeneity of final microstructure. Inthe rheocast component, the separation of the liquid and solid parts of slurry during fillinginfluenced on the microstructural inhomogeneity. The relationship between the microstructural characteristics and properties of the rheocastcomponents was investigated. The study on the fracture surfaces of the tensile-testedspecimens showed that the mechanical properties strongly affected by microstructuralinhomogeneity, in particular macrosegregation in the form of near surface liquid segregationbands and subsurface porosity. The thermal conductivity measurement showed variation ofthis property throughout the rheocast component due to variations in the ratio of solute-leanglobular α-Al particles and fine solute α-Al particles. The result showed silicon in solidsolution have a strong influence (negative) on thermal conductivity and precipitation ofsilicon by heat treatment process increase the thermal conductivity. / RheoCom

Page generated in 0.104 seconds