• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 16
  • 2
  • 2
  • 1
  • Tagged with
  • 41
  • 41
  • 26
  • 21
  • 13
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermo-Mechanical Coupling for Ablation

Fu, Rui 01 January 2018 (has links)
In order to investigate the thermal stress and expansion as well as the associated strain effect on material properties caused by high temperature and large temperature gradient, a two-way thermo-mechanical coupling solver is developed. This solver integrates a new structural response module to the Kentucky Aerothermodynamics and Thermal response System (KATS) framework. The structural solver uses a finite volume approach to solve either hyperbolic equations for transient solid mechanics, or elliptic equations for static solid mechanics. Then, based on the same framework, a quasi-static approach is used to couple the structural response and thermal response to estimate the thermal expansion and stress within Thermal Protection System (TPS) materials. To better capture the thermal expansion and study its impacts on material properties such as conductivity and porosity, a moving mesh scheme is also developed and incorporated into the solver. Grid deformation is transferred among different modules in the form of variations of geometric parameters and strain effects. By doing so, a bi-direction information loop is formed to accomplish the two-way strong thermo-mechanical coupling. Results revealed that the thermal stress experienced during atmospheric re-entry concentrates in a banded area at the edge of the pyrolysis zone and its magnitude can be large enough to cause the failure of the TPS. In addition, thermal expansion causes the whole structure to deform and the changes in material properties. Results also indicated that the impacts coming from structural response should not be ignored in thermal response.
2

Etude des cavités actives dans les nanostructures périodiques à gap de photons / Study of the nanostructured active cavities with photonic bandgaps

Soussi, Abdallah El 09 July 2019 (has links)
Dans cette thèse, une étude des microstructures périodiques et de leurs applications à la modulation optique par ondes acoustiques est présentée. Plus spécifiquement, le sujet traite du couplage opto-mécanique dans les cavités des cristaux phoXoniques. Cette étude montre comment la théorie des perturbations fournit un outil efficace d’analyse et de prédiction du comportement de la modulation dans de telles structures. Cette méthode permet également d’économiser du temps de calcul en comparaison aux calculs numériques purs. L'étude théorique de la propagation des ondes dans les milieux périodiques est d'abord introduite, puis les paramètres de l'existence simultanée des bandes interdites photoniques et phononiques sont déduites. Le développement d’une méthode semi-analytique ayant pour but d’analyser l'efficacité du couplage acousto-optique dans les structures périodiques artificielles est ensuite réalisé. La théorie des perturbations est développée jusqu'au 2ème ordre. Celle-ci, associée à des considérations de symétrie, est utilisée pour l'interprétation des résultats. Une illustration de la versatilité de la méthode, basée d'une cavité ponctuelle L1 sur substrat silicium, est présentée. Les résultats obtenus sont en accord avec ceux donnés par une méthode purement numérique. / In this thesis, a study of periodic microstructures and their applications to optical modulation by acoustical waves is presented. More specifically, it deals with opto-mechanical coupling in phoXonic crystal cavities. This study shows how the perturbation theory provides an efficient tool to analyse and predict the behaviour of modulation in such structures. Moreover, when compared to pure numerical ones, this method leads to calculation time saving. The theory of periodic media is first introduced and then we derive the parameters for the simultaneous existence of photonic and phononic bandgaps. We end up by the development of a semi-analytical method to analyze acousto-optical coupling efficiency in artificial periodic structures. The perturbation theory is developed up to 2nd order and is used together with symmetry considerations for interpretations. An illustration of the versatility of the developed method is presented using an L1 point defect cavity on silicon substrate and validated with classical numerical results.
3

Dynamic interactions of electromagnetic and mechanical fields in electrically conductive anisotropic composites

Barakati, Amir 01 December 2012 (has links)
Recent advances in manufacturing of multifunctional materials have provided opportunities to develop structures that possess superior mechanical properties with other concurrent capabilities such as sensing, self-healing, electromagnetic and heat functionality. The idea is to fabricate components that can integrate multiple capabilities in order to develop lighter and more efficient structures. In this regard, due to their combined structural and electrical functionalities, electrically conductive carbon fiber reinforced polymer (CFRP) matrix composites have been used in a wide variety of applications in most of which they are exposed to unwanted impact-like mechanical loads. Experimental data have suggested that the application of an electromagnetic field at the moment of the impact can significantly reduce the damage in CFRP composites. However, the observations still need to be investigated carefully for practical applications. Furthermore, as the nature of the interactions between the electro-magneto-thermo-mechanical fields is very complicated, no analytical solutions can be found in the literature for the problem. In the present thesis, the effects of coupling between the electromagnetic and mechanical fields in electrically conductive anisotropic composite plates are studied. In particular, carbon fiber polymer matrix (CFRP) composites subjected to an impact-like mechanical load, pulsed electric current, and immersed in the magnetic field of constant magnitude are considered. The analysis is based on simultaneous solving of the system of nonlinear partial differential equations, including equations of motion and Maxwell's equations. Physics-based hypotheses for electro-magneto-mechanical coupling in transversely isotropic composite plates and dimension reduction solution procedures for the nonlinear system of the governing equations have been used to reduce the three-dimensional system to a two-dimensional (2D) form. A numerical solution procedure for the resulting 2D nonlinear mixed system of hyperbolic and parabolic partial differential equations has been developed, which consists of a sequential application of time and spatial integrations and quasilinearization. Extensive computational analysis of the response of the CFRP composite plates subjected to concurrent applications of different electromagnetic and mechanical loads has been conducted. The results of this work verify the results of the previous experimental studies on the subject and yield some suggestions for the characteristics of the electromagnetic load to create an optimum impact response of the composite.
4

Fracture of Ferroelectric Materials

Oates, William Sumner 18 August 2004 (has links)
Ferroelectric materials continue to find increasing use in actuator, sensor and transducer design. Questions regarding lifetime and reliability remain a concern due to the inherent low fracture toughness and complex material behavior. The poling procedure required for use in actuator and sensing devices introduces anisotropy in elastic and dielectric coefficients as well as piezoelectric coupling between the mechanical and electrical fields. This introduces complex fracture behavior which necessitates advanced analytical techniques and fracture characterization. In this dissertation, fracture mechanics of ferroelectric materials is evaluated by employing different analytical techniques and experimental methodology. The theoretical work has focused on linear piezoelectric coupling that accounts for the influence of anisotropy and heterogeneity on fracture. A new orthotropic rescaling technique is presented that explicitly solves the anisotropic linear elastic piezoelectric crack problem in terms of material coefficients. The effects of heterogeneities on electric field induced microfracture are analyzed by implementing a crack at the edge of a heterogeneous piezoelectric inclusion. A positive, flaw-localized driving force is realized when permeable crack face boundary conditions are considered. The experimental portion of the work evaluates fracture behavior in the ferroelectric ceramic, lead zirconate titanate (PZT), and the ferroelectric relaxor single crystal PZN-4.5%PT. Relative humidity and electric boundary conditions are shown to have significant effects on crack kinetics in PZT. Fracture anisotropy in single crystal PZN-4.5%PT is characterized using the Single-Edge V-notch Beam (SEVNB) method and Vickers indentations. Scanning electron micrographs are used to determine the crack profile which leads to a prediction of crack tip toughness and local energy release rate. A weak cleavage plane is identified in the single crystal relaxor which contains a significantly lower toughness in comparison to the ferroelectric ceramic PZT.
5

Thermal Effects on Cu Wire Bonding by Using Finite Element Simulation

Gau, Hua-de 07 September 2010 (has links)
¡@¡@Wire bonding has been used in integrated circuit packaging for many years which has been more full-grown than other bonding methods, and gold wire has been the preferred choice. Because of the rising price of gold every year, copper wire has been increasingly used to replace gold wire. ¡@¡@The main focus of this paper is to simulate 3D copper-Al pad thermosonic wire bonding stage by using 3D finite element method. Firstly, the differences between mechanical analysis (the thermal effect was not considered) and thermo-mechanical coupling analysis from both impact stage and ultrasonic vibration stage, respectively, were compared. Secondly, the differences between copper thermosonic wire bonding analysis and gold thermosonic wire bonding analysis were discussed. Finally, the effects of Al pad thickness variation on the copper thermosonic wire bonding analysis were studied. ¡@¡@Results showed that, due to the mechanical properties will be decreased by thermal effects caused from temperature increasing, the obtained effective stress and efective strain of thermo-mechanical coupling analysis were less than the results obtained from mechanical analysis. The pad plastic defomation in copper thermosonic wire bonding is more critical than gold thermosonic wire bonding. Therefore, copper thermosonic wire bonding will lead to serious pad splashing. Also, quantity of the decreasing of pad plastic deformation was limited by increasing the pad thickness.
6

CO₂ geological storage: hydro-chemo-mechanically coupled phenomena and engineered injection

Kim, Seunghee 08 August 2012 (has links)
Global energy consumption will increase in the next decades and it is expected to largely rely on fossil fuels. The use of fossil fuels is intimately related to CO₂ emissions and the potential for global warming. Geological CO₂ storage aims to mitigate the global warming problem by sequestering CO₂ underground. Coupled hydro-chemo-mechanical phenomena determine the successful operation and long term stability of CO₂ geological storage. This research explores various coupled phenomena, identifies different zones in the storage reservoir, and investigates their implications in CO₂ geological storage. Spatial patterns in mineral dissolution and precipitation are examined based on a comprehensive mass balance formulation. CO₂-dissolved fluid flow is modeled using a novel technique that couples laminar flow, advective and diffusive mass transport of species, mineral dissolution, and consequent pore changes to study the reactive fluid transport at the scale of a single rock fracture. The methodology is extended to the scale of a porous medium using pore network simulations to study both CO₂ reservoirs and caprocks. The two-phase flow problem between immiscible CO₂ and the formation fluid (water or brine) is investigated experimentally. Plug tests on shale and cement specimens are used to investigate CO₂ breakthrough pressure. Sealing strategies are explored to plug existing cracks and increase the CO₂ breakthrough pressure. Finally, CO₂-water-surfactant mixtures are evaluated to reduce the CO₂-water interfacial tension in view of enhanced sweep efficiency. Results can be used to identify optimal CO₂ injection and remediation strategies to maximize the efficiency of CO₂ injection and to attain long-term storage.
7

Exploring a Discrete Element Approach for Chemically Mediated Deformation at Granular Contact in Calcite Minerals

Mahat, Santosh 28 August 2019 (has links)
No description available.
8

Identification des propriétés morphologiques et hygrothermiques hétérogènes de nouveaux composites hautes performances soumis à des cycles de vieillissement thermo-hygro-mécaniques / Identification of the heterogeneous morphological and hygrothermal properties within new high performance composites subjected to hygro-thermal-mechanical ageing cycles

Nguyen Thi Thuy, Quynh 28 October 2013 (has links)
Les nouveaux renforts NCF (Non Crimp Fabrics) sont adaptés aux procédés RTM (Resin Transfer Moulding) ou RIM (Resin Infusion Moulding) et permettent d’élaborer des structures aéronautiques complexes et de grande taille. Cependant, la présence de la couture peut conduire à une morphologie spécifique hétérogène du matériau avec un réseau 3D de zones riches en résine. Ces dernières, sous cycles de vieillissement hygrothermiques, sont à l’origine d’un état spécifique de fissuration. Ainsi, le présent travail se concentre sur la caractérisation morphologique et la fissuration d’une famille particulière des NCF - NC2 (Non Crimp New Concept), soumis au vieillissement hygrothermique cyclique. Pour cela, des cycles accélérés de vieillissement sont définis, diverses méthodes de caractérisation sont utilisées et différentes variables représentatives sont introduites. Au sujet de la morphologie du matériau, une hétérogénéité multi-échelles a été visualisée en surface et dans l’épaisseur en effectuant des coupes sous microscope 2D et de la reconstruction volumique sous tomographie 3D à RX. En ce qui concerne la fissuration hygrothermique, son initiation et son développement ainsi que sa morphologie ont été étudiés. L’influence de la morphologie et des paramètres de chargement au cours des cycles a été identifiée. De plus, afin de maîtriser le comportement des zones riches en résine, un couplage thermique/hygrothermique-mécanique à différents états de vieillissement du matériau a été décrit finement par des mesures de champs. Enfin, la tenue mécanique du matériau vieilli a été étudiée. / Stitched multiaxial laminates NCF (Non-Crimp Fabric) are potential candidate materials as new high performance preforms for manufacturing complex and large aeronautical composite structures by RTM (Resin Transfer Moulding) or infusion processes. Stitching within the preform leads to a particular morphology including 3D resin-rich regions and to a specific crack network developed in the bulk of the laminate when this is subjected to hygrothermal ageing cycles. The present work focuses on the characterization of the morphology and the crack development in a particular family of NCF - NC2 (Non Crimp New Concept) subjected to hygrothermal cycling. For this purpose, different accelerated thermal/hygrothermal ageing cycles were defined, various characterisation methods were adopted and representative variables were introduced. Regarding the structural morphology, a multi-scale heterogeneity of the NC2 could be visualized on the surface and through the thickness by optical microscopy as well as by the non-destructive volumetric analysis of X-Ray tomography. Regarding hygrothermal cracking, its initiation, its development and its morphology were studied. The influence of the morphology and the role of loading parameters on crack development were identified. Furthermore, for a better control of resin-rich region behaviour, the thermal/hygrothermal-mechanical coupling at different ageing states was investigated by full-field image correlation. Finally, the mechanical strength of the aged material was determined.
9

Mesure et modélisation multiéchelle du comportement thermo-magnéto-mécanique des alliages à mémoire de forme / Measurement and multiscale modeling of thermo-magneto-mechanical behavior of shape memory alloys

Fall, Mame-Daro 19 June 2017 (has links)
Le comportement des alliages à mémoire de forme (AMF) et des alliages à mémoire de forme magnétiques (AMFM) est régi par les mécanismes de transformation martensitique à l'échelle de la microstructure, à l'origine de leurs propriétés remarquables (mémoire de forme, superélasticité, grandes déformations associées à la réorientation martensitique sous champ magnétique). Les mécanismes de transformation et de réorientation martensitique peuvent être induits par des sollicitations thermiques, magnétiques et / ou mécaniques et de manière couplée. La mise au point d'outils de conception fiables nécessite une meilleure prédictibilité du comportement réel des alliages à mémoire de forme sous sollicitations thermo - magnéto - mécaniques complexes.Le choix d'une modélisation multiaxiale et multi échelle est pertinent. Le modèle reporté présente une formulation unifiée, permettant de simuler aussi bien le comportement des AMF que celui des AMFM.Parallèlement au développement de ce modèle, une étude expérimentale est nécessaire afin d'une part d'identifier les propriétés intrinsèques des matériaux étudiés, et d'autre part de valider les estimations de la modélisation. A cette fin, des mesures de fractions volumiques de phase par diffraction des rayons X in situ ont été entreprises lors de sollicitations thermiques (cycles de chauffage-refroidissement), mécaniques (traction, compression, essais biaxiaux) et magnétiques (champ magnétique unidirectionnel). L'exploitation des résultats de diffractométrie permet une analyse quantitative des fractions volumiques des phases en présence. Celles-ci sont comparées aux estimations du modèle à des fins de validation. / The behavior of shape memory alloys (SMA) and magnetic shape memory alloys (MSMA) is governed by the martensitic transformation mechanisms at the scale of the microstructure. This transformation is at the origin of their remarkable properties (memory effect, superelasticity, large deformations associated with the martensitic reorientation under magnetic field). The martensitic transformation and reorientation mechanisms can be induced by thermal, magnetic and / or mechanical stresses and in a coupled manner. The development of reliable design tools requires a better predictability of the actual behavior of shape memory alloys under complex thermal-magneto-mechanical loading.The choice of multiaxial and multiscale modeling is relevant. The model proposed in this work presents a unified formulation, making possible to simulate both the behavior of SMA and MSMA.In parallel with the development of this model, an experimental study is necessary in order to identify the intrinsic properties of the materials studied and to validate the estimates of the modeling. For this purpose, measurements of phase fractions by in-situ X-ray diffraction were carried out during thermal (heating-cooling cycles), mechanical (tensile, compressive, biaxial) and magnetic (unidirectional magnetic field) loadings. The diffraction patterns allow a quantitative estimation of the volume fractions of the phases. These are compared to model estimates for validation purposes.
10

Identification rapide des propriétés diffuso-mécaniques de matériaux polymères et composites pour applications aéronautiques / Rapid Identification of the Diffuso-Mechanical Properties for Polymeric and Composite Materials for Aeronautical Applications

Djato, Anani 06 December 2018 (has links)
L’emploi de matériaux composites à matrice organique (CMO) pour la réalisation de structures aéronautiques « tièdes », peut exposer ces matériaux à l’action d’environnements agressifs, qui peuvent entrainer des phénomènes de vieillissement et de dégradation sévères associés à la diffusion d’espèces au sein du réseau macromoléculaire des matrices polymères. La complexité de la microstructure des CMO utilisés pour ces applications peut complexifier la compréhension de phénomènes de dégradation. Le vieillissement humide des CMO préoccupe particulièrement les industriels du secteur aéronautique ; la diffusion de l’eau dans la matrice polymère du composite peut entrainer des phénomènes de gonflement hygroscopique, des modifications des propriétés mécaniques. Des méthodes expérimentales existent pour la caractérisation de ces phénomènes et pour l’identification des paramètres associés : ces méthodes préconisent souvent l’emploi d’éprouvettes saturées en humidité,ce qui nécessite de longs temps de conditionnement et un nombre élevé d’échantillons. Cette thèse a pour but d’établir des protocoles d’identification rapide des propriétés diffuso-mécaniques de matériaux polymères et CMO pour applications aéronautiques. La démarche mise en place dans cette thèse s’organise autour de quatre chapitres. Le premier chapitre présente une étude bibliographique sur les outils de modélisation des couplages diffuso-mécaniques et sur les méthodes de caractérisation des propriétés diffuso-mécaniques. L’étude bibliographique permet de préciser le cadre de travail, qui prévoit l’emploi d’un modèle diffuso-mécanique faiblement couplé où la diffusion d’eau suit la loi de Fick et le comportement mécanique est hygroélastique linéaire, dépendant de la concentration en eau. Le second chapitre présente la mise en place et le développement d’une méthode d’identification rapide des propriétés de diffusion anisotrope, adaptée à des CMO à architecture complexe.La méthode s’appuie sur des mesures de prise de masse d’échantillons de CMO, l’anisotropie de diffusion de ces matériaux est obtenue par rotation des axes principaux d’orthotropie. La méthode proposée représente une extension de la « méthode de la pente » introduite par Shen et Springer pour l’identification des propriétés de diffusion de matériaux orthotropes, et basée sur l’exploitation des courbes gravimétriques aux temps courts. A travers cette méthode, les coefficients principaux et les axes principaux d’orthotropie peuvent être identifiés. Une discussion sur les conditions d’équivalence de la diffusion 3D à la diffusion 1D en fonction de l’épaisseur de l’échantillon est également présentée à la fin de ce chapitre. Le troisième chapitre explore à travers une étude numérique la possibilité d’identifier rapidement les propriétés mécaniques affectées par la concentration en eau de matériaux polymères à travers des essais mécaniques sur plaques minces avec des gradients de concentration en eau. Des essais de traction et de flexion sont considérés. Pour des matériaux isotropes, dans un cadre hygroélastique, il est montré que cette méthode permet l’identification du module d’Young et du coefficient de Poisson dépendant de la concentration en eau avec un gain remarquable de temps d’essai par rapport à des essais sur des échantillons saturés en humidité. Enfin, le dernier chapitre propose à travers une étude numérique une méthode d’identification rapide des propriétés diffuso-mécaniques de matériaux isotropes basée sur l’emploi de plaques sollicitées par un champ asymétrique de concentration en eau. L’identification est ainsi effectuée à partir du suivi des déflexions engendrées par les champs de concentration. Le coefficient de dilatation hygroscopique et le module d’Young dépendant de la concentration en eau peuvent être identifiés durant l’essai, à l’état transitoire du conditionnement, avec un gain remarquable du temps d’essai par rapport à des essais sur échantillons saturés en humidité. / The use of organic matrix composite materials (OMC) for the realization of "warm" aeronautical structures, may expose these materials to aggressive environments: wet or gaseous environments,high temperatures, which may promote severe aging and degradation phenomena related to species diffusion within the macromolecular network of the polymer matrices. The complexity of the OMC microstructure used for these applications can complicate the understanding of degradation phenomena : for example, species diffusion can be isotropic, orthotropic or anisotropic, depending on the texture of the fibrous reinforcement. Humid aging of OMC is of particular concern for the aeronautical industry ; the diffusion of water in the polymer matrix of the composite may promote hygroscopic swelling, changes in mechanical properties (stiffness, strength). Experimental methods exist for the characterization of these phenomena and for the identification of the associated parameters : these methods often recommend the use of moisture saturated specimens, which require long conditioning times, sometimes often a relevant number of samples (1 sample for each saturated state), high costs. The aim of this work is to establish protocols for fast identification of the diffusomechanical properties of polymers and polymer based OMC materials for aeronautical applications. The approach implemented in this thesis is organized in four chapters. The first chapter presents a bibliographic study on coupled diffuso-mechanics modeling tools and on methods of characterization/identification of diffuso-mechanical properties, more particularly for OMC for aeronautical applications. The bibliographic study allows specifying the framework of the present research, which foresees the employment of a weakly coupled diffuso-mechanical model, where water diffusion follows the Fick’s law and the mechanical behavior is linear hygroelastic, depending on water content. The second chap-ter presents the setting up and the development of a method for fast identification of anisotropic diffusion properties, suitable for OMC with complex architecture, such as for instance, 2D or 3Dwoven OMC. The method relies on mass-gain measures of OMC samples, the diffusion anisotropy ofthese materials is obtained by rotating the axes of orthotropy. The proposed method represents an extension of the "slope method" introduced by Shen and Springer in the 1970s for the identification of the diffusion properties of orthotropic materials (such as laminated composites), and is based onthe exploitation of gravimetric curves at short times. Through this method, the principal coefficients and the principal axes of orthotropy can be identified. A discussion about the transition from 3Dto 1D diffusion as a function of the sample geometry is also presented at the end of this chapter. The third chapter explores through a numerical study the possibility of identifying in a fast way the mechanical properties affected by moisture of polymeric materials by the use of mechanical tests on thin plates with water concentration gradients. Traction and bending tests are taken into account.For isotropic materials, in a hygroelastic setting, it is showed that this method allows identifyng the water concentration dependent Young’s modulus and the Poisson’s ratio with a remarkable time gain compared to tests on moisture saturated samples. Finally, the last chapter proposes through a numerical study a method for fast identification of the diffuso-mechanical properties of isotropic materials based on the use of plates loaded by an asymmetric water concentration field. The identification is thus carried out from the monitoring deflections generated by the concentration fields. The moisturedependent hygroscopic expansion coefficient and Young’s modulus can be identified during the test,by exploiting the transient state of conditioning, with a remarkable time gain compared with moisture saturated samples.

Page generated in 0.1169 seconds