Spelling suggestions: "subject:"bimechanical processing"" "subject:"bymechanical processing""
11 |
The effect of chemical segregation on phase transformations and mechanical behaviour in a TRIP-assisted dual phase steelEnnis, Bernard January 2017 (has links)
In the drive towards higher strength alloys, a diverse range of alloying elements is employed to enhance their strength and ductility. Limited solid solubility of these elements in steel leads to segregation during casting which affects the entire down-stream processing and eventually the mechanical properties of the finished product. The work presented in this PhD shows that segregation of alloying elements during casting, particularly aluminium, leads directly to banding in the final product. It has been demonstrated that no significant homogenisation is possible in this alloy within practical time constraints of the industrial thermo-mechanical process. A through-process model was developed to design a thermo-mechanical treatment aimed at reducing the effects of segregation on the formation of banding. A new polynomial function for calculating the local phase transformation temperature (Ae3) between the austenite + ferrite and the fully austenitic phase fields during heating and cooling of steel is presented. Material was produced both with and without banding and used to study the effect upon the mechanical properties. The banded steel variants show a significant reduction in tensile strength for a similar level of ductility compared to non-banded variants. In situ measurement under uniaxial loading using high-energy synchrotron diffraction allowed direct quantification of the impact of the mechanically induced transformation of metastable austenite on the work- hardening behaviour. The results reveal that the mechanically induced transformation of austenite does not begin until the onset of matrix yielding and the experimental evidence demonstrates that the austenite to martensite transformation increases the work-hardening rate of the ferrite phase and delays the onset of Stage-III hardening until the yield point of austenite. The increase in work-hardening rate (and thus work required) supports a driving force approach to transformation induced plasticity. The transformation work required leads to an increase in the macroscopic work-hardening rate after matrix yielding which offsets the decrease in the work-hardening rate in the ferrite and martensite phases up to the UTS. Steels with a high degree of banding do not show this extra contribution due to the more dominant anisotropic effect of martensite bands on the work-hardening of ferrite coupled to increased mechanical austenite stability as a result of increased carbon content. A list of revisions as requested by the examiners is produced on pages 18 and 19 of the thesis for examination. Abstract: In the drive towards higher strength alloys, a diverse range of alloying elements is employed to enhance their strength and ductility. Limited solid solubility of these elements in steel leads to segregation during casting which affects the entire down-stream processing and eventually the mechanical properties of the finished product. The work presented in this PhD shows that segregation of alloying elements during casting, particularly aluminium, leads directly to banding in the final product. It has been demonstrated that no significant homogenisation is possible in this alloy within practical time constraints of the industrial thermo-mechanical process. A through-process model was developed to design a thermo-mechanical treatment aimed at reducing the effects of segregation on the formation of banding. A new polynomial function for calculating the local phase transformation temperature (Ae3) between the austenite + ferrite and the fully austenitic phase fields during heating and cooling of steel is presented. Material was produced both with and without banding and used to study the effect upon the mechanical properties. The banded steel variants show a significant reduction in tensile strength for a similar level of ductility compared to non-banded variants. In situ measurement under uniaxial loading using high-energy synchrotron diffraction allowed direct quantification of the impact of the mechanically induced transformation of metastable austenite on the work- hardening behaviour. The results reveal that the mechanically induced transformation of austenite does not begin until the onset of matrix yielding and the experimental evidence demonstrates that the austenite to martensite transformation increases the work-hardening rate of the ferrite phase and delays the onset of Stage-III hardening until the yield point of austenite. The increase in work-hardening rate (and thus work required) supports a driving force approach to transformation induced plasticity. The transformation work required leads to an increase in the macroscopic work-hardening rate after matrix yielding which offsets the decrease in the work-hardening rate in the ferrite and martensite phases up to the UTS. Steels with a high degree of banding do not show this extra contribution due to the more dominant anisotropic effect of martensite bands on the work-hardening of ferrite coupled to increased mechanical austenite stability as a result of increased carbon content.
|
12 |
Проектирование технологического процесса обработки корпусной детали «Корпус адаптера» с элементами исследования средств технологического обеспечения операций в условиях автоматизированного производства : магистерская диссертация / Designing the process of processing the body parts "Adapter housing" with elements of research of technological support tools for operations in automated production conditionsПупырева, А. С., Pupyreva, A. S. January 2019 (has links)
Работа выполнена на основании данных АО «НПО автоматики». Дипломный проект состоит из трех частей: Технологической, которая включает: описание конструкции детали; определение типа производства; разработку концепции механической обработки детали; выбор вида заготовки и метода её получения; конструирование заготовки и определение общих припусков на обработку; составление планов обработки каждой поверхности в соответствии с этапами обработки; разработку маршрута, включающего назначение базовых поверхностей, выбор станочного оборудования и технологической оснастки; моделирование эскизов на каждую операцию; определение операционных допусков и припусков на обрабатываемые поверхности; определение операционных размеров на обрабатываемые поверхности; выбор режимов обработки; определение норм времени на каждую операцию; оформление рабочей технологической документации. Конструкторской, которая включает: определение потребной силы закрепления (силовой расчёт); выбор и расчёт механизированного привода; точностной анализ приспособления; эскизное конструирование общего вида приспособления; проектирование контрольного приспособления; оформление рабочей конструкторской документации. Научно-исследовательской, которая включает экспериментальное исследование влияния режима резания на качество обрабатываемой поверхности из алюминиевого сплава АМг6 с последующим выводом уравнения регрессии. Графическая часть – 15 листов формата А1; Таблиц – 89; Рисунков – 44; Количество используемых источников – 19. / The work was performed on the basis of the data of JSC "NPO Automation". The graduation project consists of three parts: 1. Technological, which includes: description of the construction details; determining the type of production; development of the concept of machining parts; selection of the type of workpiece and the method of its receipt; design of the workpiece and the definition of total allowances for processing; drawing up plans for the treatment of each surface in accordance with the processing steps; development of the route, including the assignment of base surfaces, the choice of machine equipment and tooling; modeling sketches for each operation; Determination of operating tolerances and allowances for machined surfaces; determination of the operating dimensions of the treated surface; selection of processing modes; determination of time norms for each operation; registration of working technological documentation. Design, which includes: determination of the required strength of fastening (force calculation); selection and calculation of a mechanized drive; accuracy analysis of the device; conceptual design of the general form of the device; design of the control device; design of working design documentation. 3. Research, which includes an experimental study of the influence of the cutting mode on the quality of the processed surface of aluminum alloy AMg6 with the subsequent derivation of the regression equation. - Graphic part - 15 sheets of A1 format; - Tables - 89; Figures -40; The number of sources used - 18.
|
13 |
Mechanische Aufbereitung der Feinfraktion zerkleinerter Lithium-Ionen-Batterien / Mechanical processing of the fine fraction of crushed lithium-ion batteriesGellner, Martha 30 May 2018 (has links) (PDF)
Bei einem entwickelten Verfahren zur mechanischen Aufbereitung von Lithium-Ionen-Batterien (LIBs) aus Elektrofahrzeugen fallen zwei, hauptsächlich aus den Elektrodenbestandteilen bestehenden, Feinfraktionen (FF) an. Typischerweise erfolgt eine Rückgewinnung der enthaltenen Wertstoffe Co, Ni und Cu derzeit über eine kombinierte pyro- und hydrometallurgische Aufbereitung. Dabei dient der pyrometallurgische Schritt der Abtrennung von Stoffen, welche bei der hydrometallurgischen Aufbereitung störend wirken. Durch eine mechanische Aufbereitung der FF wurde alternativ zu dem pyrometallurgischen Schritt versucht, die in der FF enthaltenen Wertstoffe anzureichern sowie ebenfalls die Störstoffe für eine hydrometallurgische Aufbereitung abzutrennen. Dazu wurden verschiedene trockene Sortierprozesse herangezogen und auf ihre Eignung hin untersucht. Mit Hilfe der Ergebnisse wurde ein Verfahrensfließbild für die Aufbereitung der FF entworfen und testweise durchlaufen. Zusätzlich zu den Sortierversuchen wurden eine Materialcharakterisierung durchgeführt, die Aufschlussverhältnisse (visuelle Einschätzung, Bestimmung Aufschlussgrad) sowie die Aufschlusszerkleinerung der FF untersucht. Als Aufgabegut diente eine Co-, Ni-, Mn- haltige FF, welche nach der 1. Zerkleinerung und Klassierung im entworfenen Verfahrensfließbild zur Aufbereitung der LIBs aus Elektrofahrzeugen gewonnen wurde. Zur Anreicherung der Wertstoffe Co, Ni innerhalb des Aktivmaterials (AM) und Cu sowie zur Reduzierung der Störstoffgehalte von Al und Kohlenstoff in bestimmten Produkten haben sich die Siebklassierung, die Magnetscheidung, die Gegenstromsortierung sowie als nasser Dichtesortierprozess die Schwimm-Sink-Sortierung als geeignet herausgestellt. Als resultierendes technologisches Aufbereitungsverfahren haben sich aus den Ergebnissen eine Siebklassierung bei x = 200 µm und x = 800 µm mit einer nachgeschalteten Magnetscheidung oder Gegenstromsortierung für die Klasse 0,2…0,8 mm ergeben, woraus 4 Produkte resultieren. Beim testweisen Durchlaufen des resultierenden Verfahrensfließbildes hat sich zudem herausgestellt, dass in Abhängigkeit von der FF bzw. deren Kenngrößen auf die Magnetscheidung bzw. Gegenstromsortierung verzichtet werden kann. Insgesamt wird zur Aufwands- und Kostenminimierung eine Vereinheitlichung der aufzubereitenden FF empfohlen. Die Wirtschaftlichkeit des Verfahrens (inklusive Pyro- und Hydrometallurgie) wird stark durch die dynamische Entwicklung der Batterietechnologie, insbesondere der enthaltenen erlösbringenden Komponente Kobalt, und des Marktes (Verkaufsraten und Lebensdauer der LIBs) beeinflusst. Die notwendige kontinuierliche Anpassung des bestehenden Verfahrensfließbildes aufgrund der schnellen Weiterentwicklung chemischer LIB-Regime ist zudem nicht vermeidbar. Generelle Unterschiede in den FF (chemische Zusammensetzung, PGV) können auf verschiedene LIB-Typen (unterschiedliche AMs), deren Vorgeschichte (Alterungszustand, Lagerung, …) sowie die Zerkleinerungsbedingungen zurückgeführt werden. Mit Hilfe einer Bilanzierung wurden die Gehalte des gesamten AM in den FF zwischen c = 33,2 ± 3,4 Ma.-% und c = 54,9 ± 5,7 Ma.-% ermittelt. Mit Hilfe der untersuchten Methoden wurde in keinem Produkt der maximale Anreicherungsfaktor für die AMs erreicht, so dass lediglich eine Voranreicherung bezüglich dieser (und auch der anderen Komponenten) erzielt wurde. Betrachtungen zu den Verbindungs- und Aufschlussverhältnissen in der FF führten zu dem Ergebnis, dass sowohl die Anodenbeschichtung noch mit der Kupferfolie als auch die Kathodenbeschichtung mit der Aluminiumfolie im Verbund vorliegen können. Bezüglich der AMs wird ein Aufschluss im Partikelgrößenbereich größer der Primär- und Sekundärpartikelgröße (> 1 bis 20 µm) ausgeschlossen. Es konnte ein maximaler Aufschlussgrad von A = 37,9 % für eine der untersuchten Feinfraktionen bestimmt werden. Zur Zerkleinerung der Partikel in der Feinfraktion eignen sich eine Zerkleinerung in der einer Fliehkraftmühle bzw. mittels Ultraschallbeanspruchung.
|
14 |
Mechanische Aufbereitung der Feinfraktion zerkleinerter Lithium-Ionen-BatterienGellner, Martha 08 March 2018 (has links)
Bei einem entwickelten Verfahren zur mechanischen Aufbereitung von Lithium-Ionen-Batterien (LIBs) aus Elektrofahrzeugen fallen zwei, hauptsächlich aus den Elektrodenbestandteilen bestehenden, Feinfraktionen (FF) an. Typischerweise erfolgt eine Rückgewinnung der enthaltenen Wertstoffe Co, Ni und Cu derzeit über eine kombinierte pyro- und hydrometallurgische Aufbereitung. Dabei dient der pyrometallurgische Schritt der Abtrennung von Stoffen, welche bei der hydrometallurgischen Aufbereitung störend wirken. Durch eine mechanische Aufbereitung der FF wurde alternativ zu dem pyrometallurgischen Schritt versucht, die in der FF enthaltenen Wertstoffe anzureichern sowie ebenfalls die Störstoffe für eine hydrometallurgische Aufbereitung abzutrennen. Dazu wurden verschiedene trockene Sortierprozesse herangezogen und auf ihre Eignung hin untersucht. Mit Hilfe der Ergebnisse wurde ein Verfahrensfließbild für die Aufbereitung der FF entworfen und testweise durchlaufen. Zusätzlich zu den Sortierversuchen wurden eine Materialcharakterisierung durchgeführt, die Aufschlussverhältnisse (visuelle Einschätzung, Bestimmung Aufschlussgrad) sowie die Aufschlusszerkleinerung der FF untersucht. Als Aufgabegut diente eine Co-, Ni-, Mn- haltige FF, welche nach der 1. Zerkleinerung und Klassierung im entworfenen Verfahrensfließbild zur Aufbereitung der LIBs aus Elektrofahrzeugen gewonnen wurde. Zur Anreicherung der Wertstoffe Co, Ni innerhalb des Aktivmaterials (AM) und Cu sowie zur Reduzierung der Störstoffgehalte von Al und Kohlenstoff in bestimmten Produkten haben sich die Siebklassierung, die Magnetscheidung, die Gegenstromsortierung sowie als nasser Dichtesortierprozess die Schwimm-Sink-Sortierung als geeignet herausgestellt. Als resultierendes technologisches Aufbereitungsverfahren haben sich aus den Ergebnissen eine Siebklassierung bei x = 200 µm und x = 800 µm mit einer nachgeschalteten Magnetscheidung oder Gegenstromsortierung für die Klasse 0,2…0,8 mm ergeben, woraus 4 Produkte resultieren. Beim testweisen Durchlaufen des resultierenden Verfahrensfließbildes hat sich zudem herausgestellt, dass in Abhängigkeit von der FF bzw. deren Kenngrößen auf die Magnetscheidung bzw. Gegenstromsortierung verzichtet werden kann. Insgesamt wird zur Aufwands- und Kostenminimierung eine Vereinheitlichung der aufzubereitenden FF empfohlen. Die Wirtschaftlichkeit des Verfahrens (inklusive Pyro- und Hydrometallurgie) wird stark durch die dynamische Entwicklung der Batterietechnologie, insbesondere der enthaltenen erlösbringenden Komponente Kobalt, und des Marktes (Verkaufsraten und Lebensdauer der LIBs) beeinflusst. Die notwendige kontinuierliche Anpassung des bestehenden Verfahrensfließbildes aufgrund der schnellen Weiterentwicklung chemischer LIB-Regime ist zudem nicht vermeidbar. Generelle Unterschiede in den FF (chemische Zusammensetzung, PGV) können auf verschiedene LIB-Typen (unterschiedliche AMs), deren Vorgeschichte (Alterungszustand, Lagerung, …) sowie die Zerkleinerungsbedingungen zurückgeführt werden. Mit Hilfe einer Bilanzierung wurden die Gehalte des gesamten AM in den FF zwischen c = 33,2 ± 3,4 Ma.-% und c = 54,9 ± 5,7 Ma.-% ermittelt. Mit Hilfe der untersuchten Methoden wurde in keinem Produkt der maximale Anreicherungsfaktor für die AMs erreicht, so dass lediglich eine Voranreicherung bezüglich dieser (und auch der anderen Komponenten) erzielt wurde. Betrachtungen zu den Verbindungs- und Aufschlussverhältnissen in der FF führten zu dem Ergebnis, dass sowohl die Anodenbeschichtung noch mit der Kupferfolie als auch die Kathodenbeschichtung mit der Aluminiumfolie im Verbund vorliegen können. Bezüglich der AMs wird ein Aufschluss im Partikelgrößenbereich größer der Primär- und Sekundärpartikelgröße (> 1 bis 20 µm) ausgeschlossen. Es konnte ein maximaler Aufschlussgrad von A = 37,9 % für eine der untersuchten Feinfraktionen bestimmt werden. Zur Zerkleinerung der Partikel in der Feinfraktion eignen sich eine Zerkleinerung in der einer Fliehkraftmühle bzw. mittels Ultraschallbeanspruchung.
|
Page generated in 0.1017 seconds