• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanical support design of analyzer for a diffraction enhanced x-ray imaging (DEI) system

Alagarsamy, Nagarajan 18 May 2007
Diffraction Enhanced X-ray Imaging (DEI) uses synchrotron X-ray beams prepared and analyzed by perfect single crystals to achieve imaging contrast from a number of phenomena taking place in an object under investigation. The crystals used in DEI for imaging requires high precision positioning due to a narrow rocking curve. Typically, the angular precision required should be on the order of tens of nanoradians.<p>One of the problems associated with DEI is the inability to control, set, and fix the angle of the analyzer crystal in relation to the beam exiting the monochromator in the system. This angle is used to interpret the images acquired with an object present and the usual approach is to determine where the image was taken after the fact. If the angle is not correct, then the image is wasted and has to be retaken. If time or dose is not an issue, then retaking the image is not a serious problem. However, since the technique is to be developed for live animal or eventually human imaging, the lost images are no longer acceptable from either X-ray exposure or time perspectives.<p>Therefore, a mechanical positioning system for the DEI system should be developed that allows a precise setting and measurement of the analyzer crystal angles. In this thesis, the fundamental principles of the DEI method, the DEI system at the National Synchrotron Light Source (NSLS) and the sensitivity of the DEI system to vibration and temperature has been briefly studied to gain a better understanding of the problem. The DEI design at the NSLS was analyzed using finite element analysis software (ANSYS) to determine the defects in the current design which were making the system dimensionally unstable. Using the results of this analysis, the new analyzer support was designed aiming to eliminate the problems with the current design. The new design is much stiffer with the natural frequency spectrum raised about eight times. <p> This new design will improve the performance of the system at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory, New York, USA and should assist in the development of a new DEI system for the Bio-Medical Imaging and Therapy (BMIT) beamline at the Canadian Light Source (CLS), Saskatoon, CANADA.
2

Mechanical support design of analyzer for a diffraction enhanced x-ray imaging (DEI) system

Alagarsamy, Nagarajan 18 May 2007 (has links)
Diffraction Enhanced X-ray Imaging (DEI) uses synchrotron X-ray beams prepared and analyzed by perfect single crystals to achieve imaging contrast from a number of phenomena taking place in an object under investigation. The crystals used in DEI for imaging requires high precision positioning due to a narrow rocking curve. Typically, the angular precision required should be on the order of tens of nanoradians.<p>One of the problems associated with DEI is the inability to control, set, and fix the angle of the analyzer crystal in relation to the beam exiting the monochromator in the system. This angle is used to interpret the images acquired with an object present and the usual approach is to determine where the image was taken after the fact. If the angle is not correct, then the image is wasted and has to be retaken. If time or dose is not an issue, then retaking the image is not a serious problem. However, since the technique is to be developed for live animal or eventually human imaging, the lost images are no longer acceptable from either X-ray exposure or time perspectives.<p>Therefore, a mechanical positioning system for the DEI system should be developed that allows a precise setting and measurement of the analyzer crystal angles. In this thesis, the fundamental principles of the DEI method, the DEI system at the National Synchrotron Light Source (NSLS) and the sensitivity of the DEI system to vibration and temperature has been briefly studied to gain a better understanding of the problem. The DEI design at the NSLS was analyzed using finite element analysis software (ANSYS) to determine the defects in the current design which were making the system dimensionally unstable. Using the results of this analysis, the new analyzer support was designed aiming to eliminate the problems with the current design. The new design is much stiffer with the natural frequency spectrum raised about eight times. <p> This new design will improve the performance of the system at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory, New York, USA and should assist in the development of a new DEI system for the Bio-Medical Imaging and Therapy (BMIT) beamline at the Canadian Light Source (CLS), Saskatoon, CANADA.
3

Développement d’un modèle animal de choc cardiogénique pour l’évaluation des dispositifs d’assistance ventriculaire percutanés

Berbach, Léa 08 1900 (has links)
Le choc cardiogénique (CC) est un état d’hypoperfusion critique des organes cibles causé par une dysfonction profonde du myocarde. Cette situation dangereuse et dynamique nécessite des interventions rapides de la part d'une équipe multidisciplinaire pour sauver la vie du patient, mais le risque de décès demeure encore très élevé́. Actuellement, l’utilité des dispositifs d’assistance ventriculaire percutanés (DAVp) pour traiter le CC n’est pas suffisamment étudiée. Concevoir un modèle artificiel de CC pourrait faciliter la compréhension du CC ainsi que le développement de nouveaux DAVp. Au cours de ce projet, nous nous sommes premièrement intéressés au sujet en synthétisant les données cliniques sur l’utilisation des DAVp dans un contexte de CC compliquant un infarctus du myocarde (IM-CC) sous forme de revues systématiques. Par la suite, nous avons conçu un projet expérimental visant à démontrer la faisabilité d’un modèle animal stable d’IM-CC en induisant par méthode percutanée un infarctus étendu de la paroi antérieure in vivo chez le porc qui pourrait être utilisé pour fournir des données physiologiques supportant la création d’un modèle artificiel d’haute-fidélité. L’état de CC stable a été confirmé par une combinaison de données hémodynamiques et de laboratoire et l’ampleur de l’infarctus a été validée par des techniques de coloration ex vivo. Ayant atteint notre objectif primaire de ≥50% de survie suite à l’infarctus et l’induction d’un état de CC chez 50% des cochons, nous concluons que notre modèle animal est suffisamment stable pour procéder à la prochaine étape de notre programme. / Cardiogenic shock (CS) is a state of critical end-organ hypoperfusion resulting from profound myocardial dysfunction that is both dangerous and dynamic and requires rapid, coordinated multidisciplinary care in order to prevent mortality. However, despite appropriate medical management, the risk of early mortality remains high. Percutaneous mechanical support devices (pMCS) offer the promise of correcting pump dysfunction, but their clinical utility in CS remains debated and understudied. Developing a reliable synthetic model of CC could both improve our understanding of CS and accelerate the development of the next generation of pMCS devices. In this work, we first present the results of two systematic reviews of the comparative effectiveness of currently available pMCS devices in the setting of post-acute myocardial infarction CS (AMI-CS). We then sought to demonstrate the feasibility of creating a stable animal model of AMI-CS by inducing an anterior myocardial infarction in vivo in a pig in order to generate the physiologic data required to develop a high-fidelity three-dimensional AMI-CS simulator. The CS state was confirmed by a combination of hemodynamic and laboratory data and the size of the infarct was confirmed thereafter by ex vivo staining techniques. We achieved our primary goal of ≥50% short-term survival post-infarction and induction of a CS state in 50% and therefore conclude that our model is sufficiently stable to warrant proceeding with the next phase of our program

Page generated in 0.0553 seconds