• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Assessing Levels of Corrosion on Extracted MSE Wall Reinforcement

Thompson, Robert Ashton 10 April 2020 (has links)
The purpose of this study was to extract galvanized steel wire reinforcement coupons from mechanically stabilized earth (MSE) walls along I-15 and determine the rate of corrosion that has taken place since Phase I, which was conducted by Gerber and Billings (2010). The galvanized steel reinforcement analyzed in this study has been in place for 19 to 20 years at the time of extraction. A total of 85 coupons were extracted and laboratory analysis was performed to determine the thickness of remaining zinc galvanization on each coupon. Soil samples were obtained from each one-stage wall extraction location to determine moisture content for correlation with corrosion. After laboratory testing was performed, the measured zinc coating thickness was compared to that determined in Phase I. An average corrosion rate of approximately 0.032 oz/ft²/year has occurred since Phase I. According to the AASHTO (2017) design corrosion rate of 0.35 oz/ft²/year for the first two years and 0.09 oz/ft²/year until the depletion of the zinc, the zinc coating would have been completely depleted after 16 years. Based on the results of laboratory testing, the initial galvanization coating was likely greater than the specified thickness of 2.0 oz/ft² (86 μm). The zinc galvanization is corroding at a slower rate than the AASHTO design rate. The AASHTO design rate for depletion of zinc coating and subsequent corrosion of the steel reinforcement is conservative for the corrosion conditions present in the MSE wall reinforcement coupons tested. The integrity of the steel reinforcement that is currently in place is not likely to be compromised by corrosion.
2

Electrochemical assessment and service-life prediction of mechanically stabilized earth walls backfilled with crushed concrete and recycled asphalt pavement

Esfeller, Michael Watts, Jr. 02 June 2009 (has links)
A Mechanically Stabilized Earth (MSE) wall is a vertical grade separation that uses earth reinforcement extending laterally from the wall to take advantage of earth pressure to reduce the required design strength of the wall. MSE wall systems are often prefabricated to reduce construction time, thus improving constructability when compared with conventionally cast-in-place reinforced wall systems. However, there is a lack of knowledge for predicting the service-life of MSE retaining wall systems when recycled backfill materials such as Recycled Asphalt Pavement (RAP) and Crushed Concrete (CC) are used instead of Conventional Fill Material (CFM). The specific knowledge missing is how these recycled materials, when used as backfill in MSE wall systems, affects the corrosion rate of the reinforcing strips. This work addresses this knowledge gap by providing recommendations for MSE wall systems backfilled with CC or RAP, and provides a guide to predict the service-life based on corrosion rate test data obtained from embedding steel and galvanized-steel earth reinforcing strips embedded in MSE wall systems backfilled with CC, RAP, and CFM. Experimental data from samples emulating MSE wall systems with steel and galvanized-steel reinforcing strips embedded in CC and RAP were compared to samples with strips embedded in CFM. The results of the testing provide data and methodologies that may, depending on the environmental exposure conditions, justify the use of RAP and CC for the construction of MSE walls. If these backfill materials are obtained from the construction site, this could provide a significant cost savings during construction.
3

Modélisation du comportement d'un remblai en sol renforcé sous chargement ferroviaire de type TGV / Numerical model of a mechanically stabilized earth wall under high speed train loading

Payeur, Jean-Baptiste 16 October 2015 (has links)
Cette thèse étudie le comportement de remblais en sol renforcé lors du passage de trains par simulation numérique. Il s'agit de déterminer si les trains à grande vitesse ont un impact particulier sur ce type d'ouvrage. Après un état de l'art des remblais en sol renforcé et de la modélisation numérique de problèmes ferroviaires, les résultats du chargement harmonique d'un remblai expérimental en Terre Armée sont analysés. Ils montrent que les valeurs des tractions dans les armatures, des contraintes et déplacements dans le massif dépendent de la fréquence de la sollicitation, c'est-à-dire de la vitesse de passage du train. On construit un modèle 3D aux éléments finis pour reproduire cette expérience. Il permet de retrouver les valeurs expérimentales avec une bonne précision, en mettant en avant l'importance du choix des lois de comportement du sol, du parement et des armatures. Ce modèle avec ses paramètres est alors utilisé pour discuter du comportement local de l'interface armature/remblai au cours d'un chargement harmonique en régime établi. Le confinement varie beaucoup le long des armatures supérieures au cours du chargement dynamique, tandis que les tractions sont peu affectées par le chargement dynamique. Cependant, malgré ces variations au cours du temps, la stabilité de l'interface reste peu affectée par rapport au cas d'un chargement statique. Un second modèle a été développé pour représenter un remblai de taille plus importante, en utilisant la modélisation multiphasique et en utilisant un repère mobile pour prendre en compte le déplacement du train. Les aspects théoriques et l'implémentation de ce modèle dans le code CESAR-LCPC sont détaillés. On l'utilise pour effectuer une étude tri-dimensionnelle d'un remblai renforcé. Elle met en évidence la faible influence de la vitesse de la charge sur la réponse de l'ouvrage, dans le cas d'un remblai rigide ayant des caractéristiques tirées du remblai expérimental. Dans le cas d'un remblai moins rigide, la vitesse d'un TGV peut s'approcher de la vitesse des ondes de cisaillement dans le massif avec des conséquences significatives au sein de la structure. Finalement, les valeurs expérimentales et les deux modèles numériques développés présentent les mêmes tendances : l'effet dynamique du passage du train a pour conséquence une augmentation des déplacements et une variation du confinement des armatures, tandis que les niveaux de traction sont peu affectés par la charge, ce qui nous incite à conclure que la vitesse du train n'est pas significativement pénalisante sur la stabilité des remblais pour les paramètres issus de l'analyse du remblai expérimental. Toutefois, ces résultats dépendent fortement de la géométrie de la structure, de la façon de modéliser le train, des lois de comportement et des valeurs des paramètres retenus pour le sol, le parement et l'interface sol/armature / This study focuses on the numerical modeling of the Mechanically Stabilized Earth (MSE) walls behavior under High Speed Train (HST) loading. First, the state of the art in reinforced earth as well as in railway dynamics modeling is analyzed. Then we present results coming from the testing of a one-scale reinforced embankment submitted to harmonic loading. They indicate that tensile forces in reinforcements, stresses and displacements depend on loading frequency which is related to train speed. One proposes a 3D Finite Element Model (FEM) in order to numerically reproduce this experimentation. The numerical results fit reasonably well with the experimental ones, highlighting the great importance of the choice of the constitutive law for the soil, reinforcement and facing. The same model is used to locally investigate the soil/reinforcement interface behaviour during a harmonic loading in steady-state. The confining pressure presents significant variations along the reinforcement strip during the dynamic loading while tensile forces are less affected by the load. Nevertheless, the global interface stability remains acceptable compared to a static load. A second numerical model is proposed, which represents a bigger embankment. The multiphase model is used to represent the reinforced soil and moving coordinates are used to take into account the moving train. Theoretical developments of this model and its implementation into CESAR-LCPC FEM code are detailed. The results indicate that the train speed does not play a big role in the overall response of the structure, in the case of a stiff reinforcement comparable to the experimental one. If the embankment is weaker, the HST speed may be close to shear waves speed within the soil, which has significant consequences into the structure, particularly on the stability of the soil/reinforcement interface. Globally the experimental results and those coming from both numerical models present the same trends: the dynamic effect coming from the train passing leads to the in-crease of displacements and confining pressure close to the highest strips, while tensile forces are less affected by the load. This leads us to the conclusion that the train speed does not have a significant effect on the stability of MSE walls, at least for embankments having similar parameters than the experimental one. However these results strongly depend on the embankment geometry, the way to model the train and the parameters and constitutive laws chosen for the soil, the soil/reinforcement interface and the facing

Page generated in 0.1231 seconds