• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1390
  • 372
  • 248
  • 199
  • 149
  • 110
  • 83
  • 78
  • 59
  • 56
  • 30
  • 29
  • 23
  • 14
  • 11
  • Tagged with
  • 3332
  • 295
  • 285
  • 272
  • 258
  • 233
  • 198
  • 179
  • 178
  • 171
  • 167
  • 162
  • 159
  • 152
  • 145
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Effects of pipe orientation on sand transportation

Osho, Adeyemi Joseph January 2013 (has links)
Sand transport in hilly terrain geometry is different and complex to understand compared to horizontal pipeline, due to the influence of the geometry that greatly affect multiphase flow and sand behaviour at the dip. The overall aim of this research work is to use experimental method to investigate the effects of multiphase flow behaviour on sand transport in a dip configuration. Experimental work was carried out to understand the complex dynamic mechanisms that exist during sand multiphase flow using 2” inch dip test facility with different inclination angles of ±24° and ±12° configurations. In order determine the multiphase flow parameters and sand flow regimes, extensive data were collected and analysed from continuous local measurement of instantaneous liquid hold up and sand hold up using conductivity rings. Significant observations were made during this study from which several conclusions were made. In the air–water test, three slug behaviours were observed at the dip: complete stratified flow downhill with slug initiation at dip; stratified flow (with energetic ripple) downhill with slug initiation and slug growth upward dip; and aerated slug downhill and slug growth at the dip. These behaviours are different from published work on this subject with low angle of inclination. The data analysis revealed that the two types of slug initiation mechanisms (wave growth and wave coalescence) observed are geometry specifics. The slug translational velocities (at the dip and uphill section) were used as criterion to determine the flow condition for each slug initiation mechanism at the dip. Significant observations were made during this study from which several conclusions were made. In the air–water test, three slug behaviours were observed at the dip: complete stratified flow downhill with slug initiation at dip; stratified flow (with energetic ripple) downhill with slug initiation and slug growth upward dip; and aerated slug downhill and slug growth at the dip. These behaviours are different from published work on this subject with low angle of inclination. The data analysis revealed that the two types of slug initiation mechanisms (wave growth and wave coalescence) observed are geometry specifics. The slug translational velocities (at the dip and uphill section) were used as criterion to determine the flow condition for each slug initiation mechanism at the dip. Five sand-water flow regimes (full suspension, streak, saltation, sand dune, and sand bed) were established by physical observation and data analysis. It was also observed that sand streaks were denser towards the central line of pipe bottom in the downhill pipe than that in uphill pipe. At downhill pipe section, there were sand gathering toward the central line of the pipe bottom. The characteristics of sand transportation at the dip section were found slightly different from downhill and uphill pipe for higher sand concentrations. When dense streak occurred at the downhill, the sand particles become dispersed at the dip. The minimum transport conditions (MTC) were determined at different sand concentration. The sand minimum transport condition in the dip section was found to be slightly lower than those in the downhill and uphill section. The minimum transport condition for a single phase water flow for the 24˚ dip. test section was slightly higher (with difference of about 0.1m/s) than that of the 12˚ at the downward and upward of the dip section at low sand concentration. In addition, local sand measurements using conductivity time series results at the downhill and uphill section showed the influence of sand concentration and flow condition on sand flow patterns. The air-water-sand results showed that sand deposits occurred in uphill section after sand transport at the downhill and dip sections. This was due to different flow regimes exhibited at the different pipe sections. The stratified (wavy) flow was the dominant flow in downhill pipe; therefore sand was observed transporting within the liquid film as thin streak for most of test conditions. The slug initiation at the dip section was observed to be a major factor that influences the sand behaviour. Sand particles in the slug unit (at the dip and uphill of the pipe) were observed to be entrained in the slug body once slug is initiated, thereby changing the force vector generating turbulence flow at the front of slug body. Once the sand particles entered the film zone of the slug unit, they immediately stopped moving forward due to the film velocity significantly lower than the slug body coupled with gravity effect. . Sand particles were found to be falling back while travelling with the water film at some conditions, until they were picked up by the next slug body. The results of this work provide a better understanding to the study of multiphase flow for pipeline design and most especially sand behaviour at the dip. The sand dune regime is identified distinctively using conductivity ring technique which would assist in determining the operating conditions that allow sand dune formation. The knowledge of flow condition at full suspension of sand is an important parameter to determine the erosion rate over the life span of the pipeline. Also, the quantity of sand bed and flow condition of sand settling at the dip is useful information for production chemist in order to determine the effectiveness of corrosion inhibitor at the bottom of the pipe. In conclusion, sand transport characteristics and MTC were strongly dependent on the gas-liquid flow regime and pipe geometry; and cannot be generalised on the superficial liquid and gas velocities of the transport fluid.
482

Exploring physicians' decision making and perception of quality in health care delivery

Mikkelsen, Yngve January 2013 (has links)
The importance of health and quality health care in people’s daily lives is widely recognised. Physicians play a key role in delivering quality health care and improved patient outcomes. However, the evidence regarding physicians’ decision making and their perception of quality of health care delivery and its influencers is inconclusive. The overall aim of this thesis is to increase the understanding of quality in health care delivery and the factors that influence it from a physician’s perspective. This aim is fulfilled by conducting three interlinked research projects. The first research project comprises a systematic review of the literature that identifies the factors, contexts and theoretical underpinnings influencing physician decision making. The synthesis of 160 studies reveals two main categories of influencing factors. The first is ‘Contexts’, which refers to the set of circumstances or facts surrounding a particular event or situation. The second category is ‘Interventions’, which are the techniques, processes or actions introduced to create changes in how physicians make decisions while performing their clinical duties. Although extant literature provides ample evidence on factors influencing physician decision making the link to quality in health care is under researched. In the second research project, the author explores how physicians construct quality of health care delivery by means of investigating 162 clinical cases with 27 repertory gird interviews that yield eleven key constructs representing a classification of physicians’ conception of quality. The third research project examines physicians’ perceptions of enablers and barriers to quality in health care delivery, employing semi-structured interviews. Findings indicate that physician’s effort in delivering quality health care is largely influenced by factors affecting behavioural control (freedom to act). This research makes five contributions to knowledge. First, a novel classification of factors influencing physician decision making when prescribing is developed, providing new understanding of the link between these factors and quality of health care. Second, the systematic review shows an innovative application of factor analysis to structure the findings of a complex phenomenon. Third, the study presents a new conceptualisation of physicians’ construction of quality in health care. Fourth, the research provides a categorization of physicians’ perceived enablers and barriers to quality health care and the mechanisms by which they operate. Finally, this research develops a theoretically-grounded and empirically-informed conceptual model that incorporates three hitherto separate domains: agency, planned behaviour, and decision theories. This model provides a new integrated lens to better understand the complexities influencing quality in health care delivery. This study also makes two significant contributions to practice. First, the findings have helped initiate a transformation in the pharmaceutical industry’s business model, evolving from business-to-person to business-to-business. Second, the findings serve as a catalyst to drive organizational changes at Norway’s largest emergency hospital. As a result, a national debate was initiated, involving the Prime Minister and Minister of Health, on how hospital emergency care can best be provided at a national level.
483

Discrete iterative learning control of robotic manipulators

馬裕旭, Ma, Yu-xu, Lecky. January 1991 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
484

A neural-network approach to high-performance adaptive control for robot manipulators

林楠林, Lin, Nanlin. January 1998 (has links)
published_or_final_version / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
485

On the relationships between microstructure and mechanical properties of TRIP-assisted multiphase steels : strength, ductility, fracture and fatigue

Lacroix, Gauthier 23 November 2007 (has links)
In the context of sustainable development, steelmakers and automotive manufacturers decided for some years now to join their efforts to promote the development and use of advanced high strength steels such as the present TRIP steels in order to reduce the fuel consumption and emission of greenhouse gas. These multiphase steels contain some retained austenite, a ductile phase that can transform into hard and brittle martensite during a mechanical solicitation. One the one hand, this transformation improves the mechanical properties during plasticity by bringing about an additional work-hardening. On the other hand, the appearence of a hard and brittle phase can give rise to premature cracking after necking. Knowing the good influence of martensitic transformation on the work-hardening, this Thesis starts with the characterisation of the relationship between transformation rates and testing conditions. It appears that, for each testing condition, there is an optimum austenite stability that leads to a maximum uniform strain. After necking under monotonic loading conditions, the damage mechanisms that takes place in these steels has been characterised. It can be concluded that the TRIP-aided steels that present low or moderate austenite stability behave exactly like Dual-Phase steels, in which martensite replaces retained austenite. However, a very stable retained austenite brings about a significant toughness improvement by providing an additional work-hardening contribution in the necking zone. The mechanical behaviour of these steels has also been characterised under cyclic loading conditions. The results indicate that, for particular loading conditions (i.e. low load levels), the martensitic transformation improves the fatigue properties.
486

A two-Higgs-doublet model : from twisted theory to LHC phenomenology

Herquet, Michel 12 September 2008 (has links)
At the dawn of the Large Hadron Collider era, the Brout-Englert-Higgs mechanism remains the most appealing theoretical explanation of the electroweak symmetry breaking, despite the fact that the associated fundamental scalar boson has escaped any direct detection attempt. In this thesis, we consider a particular extension of the minimal Brout-Englert-Higgs scalar sector implemented in the Standard Model of strong and electroweak interactions. This extension, which is a specific, "twisted", realisation of the generic two-Higgs-doublet model, is motivated by a relative phase in the definition of the phenomenologically successful CP and custodial symmetries. Considering extensively various theoretical, indirect and direct constraints, this model appears as a viable alternative to more conventional scenarios like supersymmetric models, and gives grounds to largely unexplored possibilities of exotic scalar signatures at present and future collider experiments.
487

A study of the activity and characteristics of superoxide dismutase in the male reproductive parts of petunia

Moon, Bok Hee January 2006 (has links)
In the stamen (male reproductive tissue) of petunia 'Hurrah' flowers, the occurrence of SOD (superoxide dismutase) provided an effective anti-oxidative mechanism against superoxide production. Superoxide production and SOD activities at five developmental stages showed a positive correlation. The highest superoxide production and SOD activity in different parts of the stamen (anther, filament and pollen) were at stages with high metabolic activity: (i) during growing buds (in anthers and filaments) (ii) when flowers with predehiscent anthers were fully open (in pollen). In all parts of the stamen, SOD activity was the lowest at stage five (fully open flowers with dehiscent anthers), superoxide production was also lower at this stage with the exception of the pollen. The highest SOD activity was localized in anthers with the pollen, suggesting that the filaments only have a structural support function. SOD was examined on a native PAGE with regard to the isozymes present within the stamen of five developmental stages. Three isozymes, which were identified as Mn SOD, Fe SOD and Cu/Zn SOD by reactions with inhibitors, were commonly found at five developmental stages in crude extracts of anthers, filaments and pollen. The developmental stages with stronger isozyme bands on the native PAGE were consistent with the stages with higher SOD activities, and the Mn SOD and Fe SOD isozyme bands were more intense than Cu/Zn SOD bands, suggesting the activities of Mn SOD and Fe SOD in the crude extracts were much higher than Cu/Zn SOD. SOD from 1,000 stamens of dehiscent mature flowers was partially purified using ammonium sulphate fractionation and DEAE cellulose column chromatography. The purified bound fraction contained only one SOD isozyme on a native PAGE, which was shown to be a Mn SOD, as it is sensitive to neither hydrogen peroxide nor cyanide. The specific activity of the purified SOD was 66.5 U/mg and the yield of total activity was 3.0%. The progress of enzyme purification was monitored using SDS-PAGE and the bound fraction contained two major polypeptide bands. The purified enzyme activity was optimal in the range of neutral pH, but it was the highest at pH 7.8. Through incubation at various pH levels for 24 hours, favourable stability of the purified fraction was confirmed around a pH range of 7 to 8.5. The purified enzyme retained 87% of its initial activity at -20 ? after one month of storage, but at 4 ? only 38% of the initial activity remained after the same period of storage.
488

Oxidative DNA Damage and DNA Binding Induced by 2, 2-Bis (Bromomethyl)-1, 3-Propanediol: Possible Mode of Action Implicated in its Carcinogenicity

Kong, Weixi January 2012 (has links)
The studies in this dissertation research were conducted to investigate the possible mode of action by which a brominated flame retardant, 2, 2-Bis (bromomethyl)-1, 3-propanediol (BMP) causes genotoxicity. Binding of BMP to DNA and BMP induced DNA strand breaks were investigated in SV-40 immortalized human uroepithelial cells (UROtsa) as an in vitro model for the bladder (a tissue that developed cancer after two year exposure to BMP in rodents). Results showed binding of [¹⁴C]-BMP equivalents to DNA increased with increased exposure time and concentration of [¹⁴C]-BMP. Comet analysis indicated BMP significantly increased the extent of DNA strand breaks at 1 and 3 h of incubation. However, strand breaks were repaired by 6 h of incubation. The DNA damaging effects of BMP at 1 h was concentration dependent. Compared with the parent compound, BMP-glucuronide (the predominant metabolite of BMP) bound less to DNA and produced less DNA strand breaks in UROtsa cells. Evidences that the BMP induced strand breaks were the result of an oxidative stress include: a concentration and time dependent increase in ROS generation; increased expression of Nrf2 and HSP70; complete attenuation of BMP induced DNA strand breaks by the antioxidant, NAC; and the presence of the oxidized base 8-OHguanine. UROtsa cells appear to be target cells for BMP because, as compared to rat hepatocytes (non-target cells), these cells lack the ability to detoxify BMP via glucuronidation and also because they are deficient in glutathione, a major intracellular antioxidant molecule. Both of these genotoxic events, DNA binding and oxidative DNA damage may, in part, contribute to BMP carcinogenicity observed in rodents. The relevance of current results to humans is remained to be established.
489

Understanding the Nanotube Growth Mechanism: A Strategy to Control Nanotube Chirality during Chemical Vapor Deposition Synthesis

Gomez Gualdron, Diego Armando 1983- 14 March 2013 (has links)
For two decades, single-wall carbon nanotubes (SWCNTs) have captured the attention of the research community, and become one of the flagships of nanotechnology. Due to their remarkable electronic and optical properties, SWCNTs are prime candidates for the creation of novel and revolutionary electronic, medical, and energy technologies. However, a major stumbling block in the exploitation of nanotube-based technologies is the lack of control of nanotube structure (chirality) during synthesis, which is intimately related to the metallic or semiconductor character of the nanotube. Incomplete understanding of the nanotube growth mechanism hinders a rationale and cost-efficient search of experimental conditions that give way to structural (chiral) control. Thus, computational techniques such as density functional theory (DFT), and reactive molecular dynamics (RMD) are valuable tools that provide the necessary theoretical framework to guide the design of experiments. The nanotube chirality is determined by the helicity of the nanotube and its diameter. DFT calculations show that once a small nanotube 'seed' is nucleated, growth proceeds faster if the seed corresponds to a high chiral angle nanotube. Thus, a strategy to gain control of the nanotube structure during chemical vapor deposition synthesis must focus on controlling the structure of the nucleated nanotube seeds. DFT and RMD simulations demonstrate the viability of using the structures of catalyst particles over which nanotube growth proceeds as templates guiding nanotube growth toward desired chiralities. This effect occurs through epitaxial effects between the nanocatalyst and the nanotube growing on it. The effectiveness of such effects has a non-monotonic relationship with the size of the nanocatalyst, and its interaction with the support, and requires fine-tuning reaction conditions for its exploitation. RMD simulations also demonstrate that carbon bulk-diffusion and nanoparticle supersaturation are not needed to promote nanotube growth, hence reaction conditions that increase nanoparticle stability, but reduce carbon solubility, may be explored to achieve nanotube templated growth of desired chiralities. The effect of carbon dissolution was further demonstrated through analyses of calculated diffusion coefficients. The metallic nanocatalyst was determined to be in viscous solid state throughout growth, but with a less solid character during the induction/nucleation stage.
490

Dynamic Modeling and Control of a 6-DOF Parallel-kinematic-mechanism-based Reconfigurable Meso-milling Machine Tool

Le, Adam Yi 26 July 2012 (has links)
In this thesis, a methodology for rigid body dynamic modeling and control design is presented for a 6 degree-of-freedom (DOF) parallel-kinematic-mechanism-based reconfigurable meso-milling machine tool (RmMT) with submicron tracking accuracy requirement. The dynamic modeling of the parallel kinematic mechanism (PKM) is formulated using the Lagrangian method with the application of principle of energy equivalence and coordinate transformations to separate the mechanism into serial sub-systems. The rigid body gyroscopic force is also modeled using this approach and its effect as a disturbance is analyzed and compensated. The contour errors for both position and orientation are formulated to increase machining accuracy. The dynamic model of the system is linearized through feedback linearization and the contour error based feedback control law is formulated using the convex combination design approach to satisfy a set of design specifications simultaneously. The dynamic model and its control methodology are simulated and verified within the MATLAB Simulink environment.

Page generated in 0.0318 seconds