• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular dynamics simulations of phospholipid bilayers under deformation – a comparison between GROMACS and LAMMPS

Vo, Anh TN 25 November 2020 (has links)
Model of nanoscale deformation mechanisms of cellular structures could render different results depending on the molecular dynamics (MD) simulator chosen. Also, the comparison of different MD simulators is typically an intricate task, requiring all configurations be converted appropriately with available parameter choices. This study aims to perform and compare MD simulations between two MD programs (GROMACS and LAMMPS), in which a phospholipid bilayer is deformed under different strain states. The two systems produced similar deformation behaviors and strain state effect on bilayer failure. However, GROMACS produced more pores at lower strains, lower stress, and higher damage values. Multiple setting options and algorithm variations have been considered as possible explanations for the differences. Overall, the study aids in the cross-check of parameter settings and simulation results in MD research, particularly on the mechanical damage of bilayer membranes. Besides, based on that, GROMACS and LAMMPS could be further exploited with better reproducibility.
2

A multiscale modeling approach to investigate traumatic brain injury

Bakhtiarydavijani, Amirhamed 09 August 2019 (has links)
In the current study, mechanoporation-related neuronal injury as a result of mechanical loading has been studied using a multiscale approach. Injurious mechanical loads to the head induce strains in the brain tissue at the macroscale. As each length scale has its own unique morphology and heterogeneities, the strains have been scaled down from the macroscale brain tissue to the nanoscale neuronal components that result in mechanoporation of the neuronal membrane, while relevant neuronal membrane mechanoporation-related damage criteria have been scaled up to the macroscale. To achieve this, first, damage evolution equations has been developed and calibrated to molecular dynamics simulations of a representative neuronal membrane at the nanoscale. These damage evolution equations are strain rate and strain state dependent. The resulting damage evolution model has been combined with Nernst-Planck diffusion equations to analytically compare to intracellular ion concentration disruption through mechanical loading of in vitro neuron cell culture and found to agree well. Then, these damage evolution equations have been scaled up to the microscale for dynamic simulations of 3-dimensional reconstructed neurons of similar mechanical loads. It was found that the neuronal orientation significantly affects average damage accumulation on the neuron, while the morphology of neurons, for a given neuron type, had little effect on the average damage accumulation. At the mesoscale, finite element simulations of geometrical complexities of sulci and gyri, and the structural complexities of the gray and white matter and CSF on stress localization were studied. It was found that the brain convolutions, sulci, and gyri, along with the effects of impedance mismatch between the cerebrospinal fluid (CSF) and brain tissue localized shear stresses, at the depths of the sulcus end (near field effects) and in-between sulci (far field effects), that correlated well with the regions of tau protein accumulation that is observed in chronic traumatic encephalopathy (CTE). Further, sulcus length and orientation, with respect to impending stress waves, had a significant impact on the magnitude of stress localization in the brain tissue. Lastly, gray-white matter differentiation, pia matter, and brain-CSF interface interaction properties had minimal impact of the shear stress localization trends observed in these simulations.
3

Using molecular dynamics to quantify biaxial membrane damage in a multiscale modeling framework for traumatic brain injury

Murphy, Michael Anthony 11 August 2017 (has links)
The current study investigates the effect of strain state, strain rate, and membrane planar area on phospholipid bilayer mechanoporation and failure. Using molecular dynamics, a 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayer was deformed biaxially to represent injury-induced neuronal membrane mechanoporation and failure. For all studies, water forming a bridge through both phospholipid bilayer leaflets was used as a failure metric. To examine the effect of strain state, 72 phospholipid structures were subjected to equibiaxial, 2:1 non-equibiaxial, 4:1 non-equibiaxial, strip biaxial, and uniaxial tensile deformations at the von Mises strain rate of 5.45 × 108 s-1. The stress magnitude, failure strain, headgroup clustering, and damage behavior were strain state dependent. The strain state order of detrimentality in descending order was equibiaxial, 2:1 non-equibiaxial, 4:1 non-equibiaxial, strip biaxial, and uniaxial with failure von Mises strains of 0.46, 0.47, 0.53, 0.77, and 1.67, respectively. Additionally, pore nucleation, growth, and failure were used to create a Membrane Failure Limit Diagram (MFLD) to demonstrate safe and unsafe membrane deformation regions. This MFLD allowed representative equations to be derived to predict membrane failure from in-plane strains. To examine the effect of strain rate, the equibiaxial and strip biaxial strain states were repeated at multiple strain rates. Additionally, a 144 phospholipid structure, which was twice the size of the 72 phospholipid structure in the x dimension, was subjected to strip biaxial tensile deformations to examine planar area effect. The applied strain rates, planar area, and cross-sectional area had no effect on the von Mises strains at which pores greater than 0.1 nm2 were detected (0.509 plus/minus 7.8%) or the von Mises strain at failure (0.68 plus/minus 4.8%). Additionally, changes in bilayer planar and cross-sectional areas did not affect the stress response. However, a strain rate increase from 1.4 × 108 to 6.8 × 108 s-1 resulted in a yield stress increase of 44.1 MPa and a yield strain increase of 0.17. Additionally, a stress and mechanoporation behavioral transition was determined to occur at a strain rate of ~1.4 × 108 s-1. These results provide the basis to implement a more accurate mechano-physiological internal state variable continuum model that captures lower-length scale damage.
4

Mechanosensitive ATP release in the lungs

Tan, Ju Jing 12 1900 (has links)
L’ATP est bien connue pour son rôle de transporteur d'énergie à l’intérieur des cellules, mais en dehors de la cellule, elle agit en tant que molécule de signalisation extracellulaire. En se liant aux récepteurs purinergiques, l’ATP extracellulaire amorce la signalisation purinergique afin de réguler certains processus physiologiques et pathophysiologiques. Dans les poumons, l’ATP stimule la sécrétion de surfactant et promeut la clairance mucociliaire. Compte tenu du rôle critique de l’ATP extracellulaire dans les poumons, il est important de comprendre le mécanisme du relargage d’ATP cellulaire — la première étape de la signalisation purinergique. Parce que les forces mécaniques constituent le déclencheur principal du relargage d’ATP, cette thèse a pour but d’investiguer le(s) mécanisme(s) physiologique(s) et les sources cellulaires d’un tel relargage d’ATP mécanosensible. Cet ouvrage est divisé en trois parties : 1) Pour étudier les caractéristiques spatiales et temporelles du relargage d’ATP, j’ai développé une technique d’imagerie hautement sensible basée sur la bioluminescence de la luciférine-luciférase couplée avec un système de lentilles à grand champ de vision (WFOV, wide field of view) optimisant l’apport de lumière. Pour évaluer notre approche d’imagerie, j’ai soumis des cellules A549, dérivées d’un adénocarcinome pulmonaire humain, à un étirement ou un choc hypotonique de 50% pour déclencher un relargage d’ATP. J’ai démontré que notre technique nous permet de quantifier précisément la quantité et le taux (ou l’efflux) d’ATP s’échappant des cellules. Le WFOV constitue un outil essentiel utilisé dans les études décrites dans cette thèse pour déterminer le mécanisme et la source cellulaire du relargage d’ATP dans l’alvéole. 2) Afin d’examiner le mécanisme physiologique du relargage d’ATP induit par l’étirement dans les cellulaires alvéolaires primaires, j’ai déterminé les contributions individuelles des cellules alvéolaires de type 1 (AT1) en comparaison des cellules alvéolaires de type 2 (AT2). Pour ce faire, des cellules AT2 fraîchement isolées de poumons de rats ont été ensemencées sur une chambre flexible en silicone et cultivées jusqu’à sept jours, ce qui permettait aux cellules AT2 de se transdifférencier progressivement en cellules semblables aux cellules AT1. Le ratio des cellules alvéolaires (AT2:AT1), étant de 4:1 au jour 3, est devenu 1:4 au jour 7. La quantité d'ATP libérée diminuait avec le nombre décroissant de cellules AT2, les impliquant en tant que principale source pour le relargage d’ATP en réponse à un étirement. Alors que les modulateurs pharmacologiques des canaux d’ATP, carbenoxolone et probénécide, ne diminuaient pas la quantité d’ATP libérée, le BAPTA, un chélateur de calcium intracellulaire ([Ca2+]i), l’a significativement réduite. De même, ces trois modulateurs exercent des effets similaires sur les réponses calciques intracellulaires mesurées par le Fura-2, suggérant une connexion entre le relargage d’ATP et les niveaux de [Ca2+]i. 3) Pour explorer le rôle qu’ont les propriétés viscoélastiques de la membrane dans le relargage d’ATP mécanosensible, j’ai démontré qu’une déformation de 30% induisait un relargage d’ATP transitoire qui était accompagné d’une absorption d’iodure de propidium (PI, propidium iodide) chez des cellules AT2. Ceci est cohérent avec une rupture membranaire transitoire induite par une déformation, assez large pour le passage d’ATP et de PI. L’efflux d’ATP augmente aussi selon le taux de déformation, et la durée de déformation prolonge la demi-vie du relargage d’ATP. Donc, ces résultats fournissent des indices sur la manière dont l’étirement de la membrane viscoélastique peut mener au relargage d’ATP par un mécanisme alternatif impliquant une mécanoporation de la membrane cellulaire. Dans l’ensemble, ces résultats démontrent que le relargage d’ATP ne se produit pas à travers les canaux conduisant l’ATP mais plutôt par une mécanoporation transitoire de la membrane. D’autres études sur les dommages membranaires sont nécessaires pour mieux comprendre sa contribution dans le relargage d’ATP mécanosensible et les signaux de [Ca2+]i. De telles études élucideront la signalisation purinergique dans les organes qui sont constamment exposés à des contraintes physiques. Ceci pourrait suggérer des cibles/approches thérapeutiques pour moduler les impacts négatifs d’un relargage d’ATP excessif observés lors de certaines conditions pathologiques, telles que les lésions pulmonaires induites par la ventilation mécanique. / ATP is widely known to be an energy carrier within cells, but outside of the cell, it acts as an extracellular signaling molecule. Upon binding to purinergic receptors, extracellular ATP initiates the purinergic signaling to regulate certain physiological and pathophysiological processes. In the lungs, ATP stimulates surfactant secretion and promotes mucociliary clearance. Given the critical role of extracellular ATP in the lungs, it is important to understand the mechanism of cellular ATP release — the first step of purinergic signaling. Because mechanical forces constitute the primary trigger of ATP release, this thesis aims to investigate the physiological mechanism(s) and cellular sources of such mechanosensitive ATP release. This work is divided into three parts: 1) To study the spatial and temporal characteristics of ATP release, I developed a highly sensitive imaging technique based on luciferin-luciferase bioluminescence coupled with a custom-designed lens system, which combined a wide field of view (WFOV) and high light-gathering power. To evaluate our imaging approach, I subjected A549 cells, derived from human lung adenocarcinoma, to stretch or 50% hypotonic shock to trigger ATP release. I demonstrated that our technique allows us to precisely quantify the amount and the rate (or efflux) of ATP escaping from cells. The WFOV constitutes an essential tool used in the studies described in this thesis to determine the mechanism and cellular source of ATP release in the alveolus. 2) To examine the physiological mechanism of stretch-induced ATP release in primary alveolar cells, I determined the individual contributions of alveolar type 1 (AT1) in comparison with alveolar type 2 (AT2) cells. To this end, freshly isolated AT2 cells from rat lungs were seeded on a flexible silicone chamber and were cultured for up to seven days, which allowed AT2 cells to progressively transdifferentiate into AT1-like cells. The ratio of alveolar cells (AT2:AT1), being 4:1 on day 3, became 1:4 on day 7. The quantity of released ATP decreased with the decreasing numbers of AT2 cells, implicating them as the main source of ATP release in response to stretch. While pharmacological ATP channel modulators, carbenoxolone and probenecid, did not diminish the amount of ATP release, BAPTA, an intracellular calcium ([Ca2+]i) chelator, significantly reduced it. Likewise, these three modulators had similar effects on intracellular calcium responses measured by Fura-2, suggesting a connection between ATP release and [Ca2+]i levels. 3) To explore the role of membrane viscoelastic properties in mechanosensitive ATP release, I demonstrated that a 30% strain induced transient ATP release that was accompanied by uptake of propidium iodide (PI) in AT2 cells. This is consistent with a strain-induced transient membrane rupture, big enough for the passage of ATP and PI. ATP efflux also increases with strain rate, and hold time prolongs the half-life of ATP release. Thus, these results provide clues on how stretching of the viscoelastic membrane may lead to ATP release via an alternate mechanism involving transient mechanoporation of the cell membrane. Overall, these findings demonstrate that stretch-induced ATP release does not occur through ATP-conducting channels but rather a transient membrane mechanoporation. Further studies on membrane injury induced by strain are needed to better understand its contribution to mechanosensitive ATP release and [Ca2+]i signaling. Such studies will elucidate purinergic signaling in organs that are constantly exposed to physical stresses. This could suggest novel therapeutic targets/approach to modulate the negative impacts of excessive ATP release observed under certain pathological conditions, such as ventilator-induced lung injury.

Page generated in 0.0792 seconds