• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • 1
  • Tagged with
  • 13
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effets de l'étirement axial sur des cardiomyocytes murins déficients en dystrophine : dérégulation calcique et canaux TRPs / Effects of axial stretch on murine deficient-dystrophin cardiomyocytes : calcium deregulation and TRPs channels

Aguettaz, Elizabeth 29 June 2015 (has links)
La dystrophie musculaire de Duchenne (DMD) est la conséquence de la perte de la dystrophine, protéine sous membranaire indispensable au maintien mécanique et fonctionnel du sarcolemme. Cette déficience augmenterait les influx cationiques par des microruptures de la membrane ou par la dérégulation de canaux tels que les canaux activés par l'étirement (SACs: Stretch-activated channel). Dans ce travail, les effets d'une stimulation mécanique ont été explorés sur des cardiomyocytes dans le contexte pathologique de la cardiomyopathie dilatée associée à la DMD. L'utilisation de fibres de carbone a permis de réaliser un étirement axial similaire aux conditions physiologiques de remplissage ventriculaire. Dans ces conditions, l'exploration de la topographie membranaire par la microscopie de conductance ionique à balayage n'a montré aucune évolution de la surface ni de lésion du sarcolemmel dans les conditions d'étirement. L'étude s'est donc focalisée sur l'activité de candidats moléculaires des SACs et plus particulièrement ceux appartenant à la famille des TRPs (Transient Receptor Potential) dans le dérèglement de l'homéostasie calcique induite par l'étirement. Les influx cationiques évalués par la technique d'extinction de fluorescence et l'étude de la concentration intracellulaire de Ca2+ ([Ca2+]i) grâce à la sonde Fluo8 montrent une implication des canaux TRPV2 et TRPCs. Les premiers semblent responsables d'une entrée cationique et d'une augmentation de [Ca2+]i importante dans les cardiomyocytes mdx. Les seconds, bien que responsables d'un influx, ne participeraient pas à l'augmentation de [Ca2+]i. Ces résultats révèlent que les canaux TRPV2 pourraient jouer un rôle important dans la dérégulation calcique observée dans les cardiomyocytes déficients en dystrophine. / Duchenne muscular dystrophy (DMD) is the consequence of the loss of dystrophin, a subsarcolemmal protein essential for mechanical and functional maintenances of the sarcolemma. This deficiency could increase cationic influxes by membrane microruptures or by dysregulation of channels such as stretch-activated channels (SACs). In this work, the effects of a mechanical stretch were explored on cardiomyocytes in the pathological context of dilated cardiomyopathy associated with DMD. Using carbon fibers, an homogenous axial stretch was performed to mimic physiological conditions of ventricular filling. In these conditions, exploration of membrane topography using the scanning ion conductance microscopy did not show any surface evolution or sarcolemma disruption in stretch condition. The study was thus focused on activity and identification of molecular candidates for SACs, especially the TRPs (Transient Receptor Potential) channels in the stretch-induced. Ca2+ homeostasis dysregulation. Cationic influxes assessed by Mn2+-quenching and assessment of the intracellular Ca2+ concentration ([Ca2+]i) using fluo-8 fluorescence demonstrated an involvement of TRPV2 and TRPCs channels. The first ones seem to be responsible for cationic entry and [Ca2+]i increase in mdx cardiomyocytes. The latter, though responsible for an influx, do not contribute to [Ca2+]i increase. These findings reveal that TRPV2 channels could play an important role in calcium dysregulation observed in dystrophin-deficient cardiomyocytes.
12

On the role of mechanosensitive binding dynamics in the pattern formation of active surfaces

Bonati, M., Wittwer, L. D., Aland, S., Fischer-Friedrich, E. 22 February 2024 (has links)
The actin cortex of an animal cell is a thin polymeric layer attached to the inner side of the plasma membrane. It plays a key role in shape regulation and pattern formation on the cellular and tissue scale and, in particular, generates the contractile ring during cell division. Experimental studies showed that the cortex is fluid-like but highly viscous on long time scales with a mechanics that is sensitively regulated by active and passive cross-linker molecules that tune active stress and shear viscosity. Here, we use an established minimal model of active surface dynamics of the cell cortex supplemented with the experimentally motivated feature of mechanosensitivity in cross-linker binding dynamics. Performing linear stability analysis and computer simulations, we show that cross-linker mechanosensitivity significantly enhances the versatility of pattern formation and enables self-organized formation of contractile rings. Furthermore, we address the scenario of concentration-dependent shear viscosities as a way to stabilize ring-like patterns and constriction in the mid-plane of the active surface.
13

Primary brain cells in in vitro controlled microenvironments : single cell behaviors for collective functions / Cellules primaires du cerveau en microenvironnements contrôlés in vitro

Tomba, Caterina 05 December 2014 (has links)
Du fait de sa complexité, le fonctionnement du cerveau est exploré par des méthodes très diverses, telles que la neurophysiologie et les neurosciences cognitives, et à des échelles variées, allant de l'observation de l'organe dans son ensemble jusqu'aux molécules impliquées dans les processus biologiques. Ici, nous proposons une étude à l'échelle cellulaire qui s'intéresse à deux briques élémentaires du cerveau : les neurones et les cellules gliales. L'approche choisie est la biophysique, de part les outils utilisés et les questions abordées sous l'angle de la physique. L'originalité de ce travail est d'utiliser des cellules primaires du cerveau dans un souci de proximité avec l'in vivo, au sein de systèmes in vitro dont la structure chimique et physique est contrôlé à l'échelle micrométrique. Utilisant les outils de la microélectronique pour un contrôle robuste des paramètres physico-chimiques de l'environnement cellulaire, ce travail s'intéresse à deux aspects de la biologie du cerveau : la polarisation neuronale, et la sensibilité des cellules gliales aux propriétés mécaniques de leur environnement. A noter que ces deux questions sont étroitement imbriquées lors de la réparation d'une lésion. La première est cruciale pour la directionalité de la transmission de signaux électriques et chimiques et se traduit par une rupture de symétrie dans la morphologie du neurone. La seconde intervient dans les mécanismes de recolonisation des lésions, dont les propriétés mécaniques sont altérées., Les études quantitatives menées au cours de cette thèse portent essentiellement sur la phénoménologie de la croissance de ces deux types de cellules et leur réponse à des contraintes géométriques ou mécaniques. L'objectif in fine est d'élucider quelques mécanismes moléculaires associés aux modifications de la structure cellulaire et donc du cytosquelette. Un des résultats significatifs de ce travail est le contrôle de la polarisation neuronale par le simple contrôle de la morphologie cellulaire. Ce résultat ouvre la possibilité de développer des architectures neuronales contrôlées in vitro à l'échelle de la cellule individuelle. / The complex structure of the brain is explored by various methods, such as neurophysiology and cognitive neuroscience. This exploration occurs at different scales, from the observation of this organ as a whole entity to molecules involved in biological processes. Here, we propose a study at the cellular scale that focuses on two building elements of brain: neurons and glial cells. Our approach reachs biophysics field for two main reasons: tools that are used and the physical approach to the issues. The originality of our work is to keep close to the in vivo by using primary brain cells in in vitro systems, where chemical and physical environments are controled at micrometric scale. Microelectronic tools are employed to provide a reliable control of the physical and chemical cellular environment. This work focuses on two aspects of brain cell biology: neuronal polarization and glial cell sensitivity to mechanical properties of their environment. As an example, these two issues are involved in injured brains. The first is crucial for the directionality of the transmission of electrical and chemical signals and is associated to a break of symmetry in neuron morphology. The second occurs in recolonization mechanisms of lesions, whose mechanical properties are impaired. During this thesis, quantitative studies are performed on these two cell types, focusing on their growth and their response to geometrical and mechanical constraints. The final aim is to elucidate some molecular mechanisms underlying changes of the cellular structure, and therefore of the cytoskeleton. A significant outcome of this work is the control of the neuronal polarization by a simple control of cell morphology. This result opens the possibility to develop controlled neural architectures in vitro with a single cell precision.

Page generated in 0.0499 seconds