Spelling suggestions: "subject:"amedical implants"" "subject:"amedical iomplants""
1 |
The haemocompatability of ultra-smooth silicon and nitrogen doped hydrogenated amorphous carbon thin filmsOkpalugo, Thomas Ifeanyi Timothy January 2002 (has links)
No description available.
|
2 |
High Frequency Electrochemical Nanopolishing of Alpha TitaniumKanchwala, Abbas M 16 December 2013 (has links)
Product miniaturization is an ever increasing customer demand in aerospace, bio-medical, defense and electronics industries. These microparts play a vital role and are required to abide by stringent norms set forth by various quality control agencies. To maintain their functionality over a period of time, they are made of special engineering materials rather than silicon as commonly used in microelectronics. Lithography, etching, embossing, electroplating, laser machining and other micro manufacturing techniques have been employed traditionally to manufacture microcomponents; however, these techniques would be expensive, cause surface damage, or produce a very rough surface.
Electrochemical polishing is capable of machining/polishing any conducting material while holding close dimensional tolerances. This research develops a high frequency electrochemical nanopolishing technique for commercially pure alpha titanium. An alcohol and salt based electrolyte was used with direct current as well as alternating current on alpha titanium plate. For both current types, optimal surface roughness R_(a) ~ 300 nm was obtained on poly grained surface using interferometry and ~ 2 nm within a single grain by atomic force microscopy. Comparable results were obtained by other researchers with 30-120 nm R_(a) for titanium and titanium alloys. Linear regression models were developed to predict the surface roughness. The surface roughness predicted by the models was found to be within 26% of the measured values.
|
3 |
Development of an Implantable Data Acquisition SystemSonalkar, Prachi Santosh 05 October 2005 (has links)
No description available.
|
4 |
Conception et réalisation d'un microgénérateur piézoélectrique basse fréquence pour pacemaker sans fil / Design and fabrication of a low frequency microgenerator for leadless pacemakerColin, Mikaël 28 June 2016 (has links)
Le domaine de l’assistance cardiaque connait actuellement une rupture technologique avec l’apparition du pacemaker sans fil. Grâce à ces nouveaux dispositifs, la prise en charge des patients est simplifiée. En outre, la suppression des sondes devenues obsolètes devrait permettre une réduction drastique des problèmes rencontrés avec les pacemakers traditionnels. Cependant, la question de l’alimentation reste posée. Dans ce travail de thèse, nous tentons d’apporter une solution à base de microgénérateur piézoélectrique inertiel récupérant une portion de l’énergie vibratoire des battements cardiaques. La démarche suivie consiste tout d’abord à définir le besoin et la pertinence d’une solution à base de récupérateur d’énergie. Nous analysons ensuite l’allure de signaux cardiaques qui ont été enregistrés à l’aide d’accéléromètres directement positionnés sur le site de stimulation. On montre ainsi que le gisement vibratoire adressé (i.e. les battements cardiaques) imposent des récupérateurs vibrant aux alentours de 16 Hz. Ces fréquences sont extrêmement faibles en comparaison des microgénérateurs présentés dans la littérature (typ. > 100 Hz). Dans un second temps, et indépendamment de considérations purement technologiques, nous établissons, à l’aide de modèles analytiques et numériques, le dimensionnement optimal permettant de répondre simultanément aux spécifications dimensionnelles et au niveau de puissance récoltée nécessaire. Cette phase d’optimisation montre qu’un compromis entre fréquence de résonance et puissance délivrée doit être fait et, plus particulièrement, que celui-ci conduit à l’expression d’un besoin en termes d’épaisseur de couches piézoélectriques auquel aucune des technologies standards ne permet de répondre. Nous présentons, dans ce manuscrit, les travaux qui ont ainsi été menés pour développer une technique de réalisation de couches épaisses de PZT (typ. 15 à 100 µm) par amincissement de céramiques massives. Ce mode de réalisation est enfin mis en œuvre pour la fabrication d’un démonstrateur à l’échelle, de type poutre encastrée-libre bimorphe vibrant à 16 Hz. Nous montrons finalement que les résultats obtenus à partir de battements cardiaques reproduits en laboratoire (10-15 µW) sont en ligne avec les besoins exprimés pour la mise en œuvre d’une solution d’alimentation pour pacemaker sans fil. Ce travail de thèse a été conduit dans le cadre du projet HBS (Heart Beat Scavenging) notamment en collaboration avec la société LivaNova-Sorin CRM (Cardiac Rythm Management). Il est fortement probable que la décision initiale d’articuler l’ensemble de tâches accomplies autour des besoins de l’utilisateur final soit une des clés de la réussite de ce travail. En effet, les démonstrateurs développés dans ce travail de thèse ont, par la suite, été testés avec succès sur l’animal. Ils ont également donné lieu à un nouveau projet dont un des objectifs est d’adresser les aspects de fiabilité et de vieillissement. Ces nouvelles tâches correspondent ainsi à la poursuite de la montée en TRL (Technology Readiness Level) vers les étapes de pré-industrialisation. / The field of cardiac assistance is currently experiencing a new technological breakthrough with the introduction of the leadless pacemaker. With these new devices, the care of patients is simplified. Furthermore, removal of the leads should allow a drastic reduction of the problems encountered with conventional pacemakers. However, the question of the energy supply remains. In this thesis, we try to provide a solution based on piezoelectric inertial micro-generator in order to harvest a portion of the heartbeat vibrational energy. The approach is to first define the need and relevance of a solution based on energy scavenging. We then analyze the cardiac signals that were recorded using accelerometers positioned directly on the stimulation site. It is shown that the addressed vibration source (i.e. heartbeats) impose the devices to vibrate at around 16 Hz. These frequencies are extremely low compared to microgenerators presented in the literature (typ.> 100 Hz). Secondly, regardless of technological considerations, and using analytical and numerical models, we identify the optimal device dimensions in order to simultaneously meet the specifications in terms of size and required harvested power. This optimization phase shows that a trade-off between resonant frequency and output power must be made and, more particularly, that it leads to the expression of a need in terms of piezoelectric layer thickness to which none of the standard technologies can currently answer. Therefore, we present the work that has been undertaken to develop a technique for producing thick layers of PZT (typ. 15 to 100 µm) by the thinning and the polishing of bulk ceramics. Then, this technique is implemented for the fabrication of our demonstrator: a cantilever of bimorph type vibrating at 16 Hz. Finally, we show that the obtained results (10-15 µW) from heartbeats reproduced in the laboratory are in line with the expressed needs for the implementation of an energy supply solution for leadless pacemakers. This thesis work has been conducted in the frame of the HBS project (Heart Beat Scavenging) especially in collaboration with the company LivaNova - Sorin CRM (Cardiac Rhythm Management). It is highly believed that the original decision to articulate all the tasks that we performed around the end user needs was a key to the success of this work. Indeed, the demonstrators developed in this thesis have subsequently been successfully tested on animals. They also led to a new project whose objectives are to address the reliability and aging of these demonstrators. These new tasks correspond to the continuation of the TRL increase (Technology Readiness Level) to the stages of pre-industrialization.
|
5 |
Design and Manufacturing Guidelines for Additive Manufacturing of High Porosity Cellular StructuresKabbur, Nikhil 07 November 2017 (has links)
No description available.
|
6 |
Topology and Lattice-Based Structural Design Optimization for Additively Manufactured Medical ImplantsPeto, Marinela 05 1900 (has links)
Topology-based optimization techniques and lattice structures are powerful ways to accomplish lightweight components with enhanced mechanical performance. Recent developments in additive manufacturing (AM) have led the way to extraordinary opportunities in realizing complex designs that are derived from topology and lattice-based structural optimization. The main aim of this work is to give a contribution, in the integration between structural optimization techniques and AM, by proposing a setup of a proper methodology for rapid development of optimized medical implants addressing oseeointegration and minimization of stress shielding related problems. The validity of the proposed methodology for a proof of concept was demonstrated in two real-world case studies: a tibia intramedullary implant and a shoulder hemi prosthetics for two bone cancer patients. The optimization was achieved using topology optimization and replacement of solid volumes by lattice structures. Samples of three lattice unit cell configurations were designed, fabricated, mechanically tested, and compared to select the most proper configuration for the shoulder hemi prosthesis. Weight reductions of 30% and 15% were achieved from the optimization of the initial design of the tibia intramedullary implant and the shoulder hemiprosthesis respectively compared to initial designs. Prototypes were fabricated using selective laser melting (SLM) and direct light processing (DLP) technologies. Validation analysis was performed using finite element analysis and compressive mechanical testing. Future work recommendations are provided for further development and improvement of the work presented in this thesis.
|
Page generated in 0.0434 seconds