Spelling suggestions: "subject:"amedical decision support system"" "subject:"comedical decision support system""
1 |
Sistema BabyCare: sistema de coleta e apoio à decisão na atenção primária materno infantil para comunidades carentes baseado em dispositivos móveis / BabyCare System: maternal and infantile health support and data acquisition system for underdeveloped communities based on mobile devicesCosta, Carmen Lúcia de Bartolo [UNIFESP] January 2005 (has links) (PDF)
Submitted by Maria Anália Conceição (marianaliaconceicao@gmail.com) on 2016-08-18T18:29:46Z
No. of bitstreams: 1
Publico-10.pdf: 2044084 bytes, checksum: eef64e9d622b35c3b0880540380f1814 (MD5) / Approved for entry into archive by Maria Anália Conceição (marianaliaconceicao@gmail.com) on 2016-08-18T18:31:35Z (GMT) No. of bitstreams: 1
Publico-10.pdf: 2044084 bytes, checksum: eef64e9d622b35c3b0880540380f1814 (MD5) / Made available in DSpace on 2016-08-18T18:31:35Z (GMT). No. of bitstreams: 1
Publico-10.pdf: 2044084 bytes, checksum: eef64e9d622b35c3b0880540380f1814 (MD5)
Previous issue date: 2005 / Intel do Brasil / Altos índices de mortalidade infantil em comunidades carentes podem ser evitados através da identificação precoce dos fatores de risco e do acompanhamento direto e contínuo da assistência médica materno infantil. No entanto, essa assistência demonstra ser complexa, com precariedade na locomoção e troca de informação das equipes da saúde, comumente constituídas por profissionais de diversas especialidades. Ainda, verifica-se uma freqüente participa- ção de voluntários de organizações não governamentais envolvidos diretamente com essa assistência. O objetivo desse trabalho foi desenvolver um instrumento digital – aqui denominado Sistema BabyCare – para a coleta, armazenamento e apoio à decisão aos profissionais de saúde, e demais envolvidos, nos cuidados a pacientes na assistência primária infantil em comunidades carentes. Esse sistema baseia-se em tecnologias de dispositivos móveis para utilização local em unidades básicas de saúde em comunidades carentes, assistidos ou não pelo Programa Saúde da Família (PSF), e ambulatórios e hospitais. Foram realizadas avaliações sobre o uso do sistema na cidade de São Paulo, envolvendo 60 usuários com diferentes formações, incluindo voluntários da Pastoral da Criança. Os questionários aplicados resultam um alto índice de aceitação geral (98,3%); treinamento in loco considerado adequado (91,9%); percepção na melhoria na rotina e na redução de tempo da consulta (100,0%), e na redução no volume de documentos (96,7%). Por fim, o protótipo apresentou-se robusto e eficiente para uso em comunidade / High infant mortality rates in needy communities can be prevented through direct and continuous follow-up of maternal and child health care. However, this assistance has proven to be complex, with the precarious mobility and exchange of information of healthcare teams, usually consisting of professionals from different specialties. In addition, there is a frequent participation of volunteers from non-governmental organizations directly involved in this assistance. The purpose of this work was to develop a digital device – referred as BabyCare
System – for the collection, storage and support to decision for healthcare professionals and other concerned people, in order to assist patients in primary child care in needy communities. This system is based on handheld device technologies to be used locally in basic healthcare units in needy communities,
whether assisted or not by the Healthcare Family Program (Programa Saúde da
Família – PSF), as well as in ambulatory facilities and hospitals. Evaluations
have been conducted regarding the use of the system in the city of São Paulo,
involving 60 users with different formations, including volunteers from the Pastoral
da Criança, an ecumenical institution for children. The applied questionnaires result in a high level of general acceptance (98.3%); the on-site training was considered as appropriate (91.9%); a perception of routine improvement and decrease in the time of consultation (100.0%), and a decrease in the volume of paperwork (96.7%). Finally, the prototype has proven to be robust and effective for the use in needy communities with precarious computer and telecommunication
infrastructure.
|
2 |
Estudo comparativo avaliando três modalidades de diagnóstico médico parecer médico, buscas no Google e sistema especialista de apoio à decisão médica /Souza, Ademar Rosa de January 2020 (has links)
Orientador: Luís Cuadrado Martin / Resumo: O conhecimento sobre qualquer patologia pode ser facilmente encontrado na internet, mas dificilmente encontra-se alguma ferramenta que faça a análise e o raciocínio entre os dados de um paciente e se obtenha o diagnóstico mais provável. Em nosso cotidiano, em virtude de uma maior demanda na área da saúde, existe uma necessidade crescente de diagnósticos médicos rápidos e precisos. Em virtude disso, foi elaborado um Sistema de Apoio à Decisão Médica com o intuito de otimizar e agilizar de forma confiável os diagnósticos médicos. A ideia é dar qualidade e agilidade à prática médica, adotando a tecnologia como ferramenta básica: “Quem tem mais informação, tem melhores condições para escolher e tomar decisões”. Na construção deste sistema, foram utilizados um banco de dados relacional (MySQL) e aplicadas técnicas de inteligência artificial, tais como: a construção de Árvores de Decisão, Aprendizado não supervisionado e a utilização das Redes de Bayes (onde estão envolvidos domínios de conhecimento com significativo grau de incerteza, como é o caso da área médica). Através da união destas técnicas, são feitas a seleção e classificação das doenças mais prováveis, onde as mesmas podem ser examinadas com mais detalhes pelo médico, garantindo assim uma maior segurança na escolha dos possíveis diagnósticos. Visando uma maior abrangência e rapidez na disseminação do conhecimento humano, o sistema foi disponibilizado via internet (www.danton.med.br). Para a concepção do projeto foi reali... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The knowledge about any pathology can be easily found on the internet, but it is difficult to find any tool that makes the analysis and reasoning between the data of a patient and obtain the most probable diagnosis. In our daily lives, due to a greater demand in the health area, there is a growing need for fast and accurate medical diagnoses. As a result, a Medical Decision Support System was developed in order to reliably optimize and streamline medical diagnostics. The idea is to give quality and agility to medical practice, adopting technology as a basic tool: “Who has more information, has better conditions to choose and make decisions”. In the construction of this system, a relational database (MySQL) was used and artificial intelligence techniques were applied, such as: the construction of Decision Trees, Unsupervised Learning and the use of Bayes Networks (where knowledge domains are involved with significant degree of uncertainty, as is the case in the medical field). Through the union of these techniques, the selection and classification of the most probable diseases are made, where they can be examined in more detail by the doctor, thus ensuring greater security in the choice of possible diagnoses. Aiming at a greater scope and speed in the dissemination of human knowledge, the system was made available via internet (www.danton.med.br). To design the project, a prospective, randomized, crossover and open study was carried out; in which 3 groups of doctors (called gr... (Complete abstract click electronic access below) / Doutor
|
3 |
¿¿¿¿¿¿¿¿¿¿¿¿PROGNOSIS: A WEARABLE SYSTEM FOR HEALTH MONITORING OF PEOPLE AT RISKPantelopoulos, Alexandros A. 28 October 2010 (has links)
No description available.
|
4 |
Une approche pour la conception de systèmes d'aide à la décision médicale basés sur un raisonnement mixte à base de connaissance / An approach for the construction of medical decision support systems based on mixed Knowledge-based reasoningBenmimoune, Lamine 10 December 2016 (has links)
Afin d'accompagner les professionnels de santé dans leur démarche clinique, plusieurs systèmes de suivi et deprise en charge médicale ont été construits et déployés dans le milieu hospitalier. Ces systèmes permettentprincipalement de collecter des données médicales sur les patients, de les analyser et de présenter les résultats dedifférentes manières. Ils représentent un appui et une aide aux professionnels de santé dans leur prise de décisionpar rapport à l'évolution de l'état de santé des patients suivis. L'utilisation de tels systèmes nécessitesystématiquement une adaptation à la fois au domaine médical concerné et au mode d'intervention. Il estnécessaire, dans un milieu hospitalier, que ces systèmes puissent s'adapter et évoluer d'une manière simple, enlimitant toute maintenance corrective ou évolutive. Ils doivent être en mesure de prendre en compte dynamiquementdes connaissances théoriques et empiriques du domaine issues des experts médicaux.Afin de répondre à ces exigences, nous avons proposé une approche pour la construction d'un système d'aide à ladécision médicale capable de s'adapter au domaine médical concerné et au mode d'intervention approprié pourassister les professionnels de santé dans leur démarche clinique. Cette approche permet notamment l'organisationde la collecte des données médicales, en tenant compte du contexte du patient, la représentation desconnaissances du domaine à base d'ontologies ainsi que leur exploitation associée aux guides de bonnes pratiqueset à l'expérience clinique.Dans la continuité des travaux précédemment réalisés au sein de notre équipe de recherche, nous avons choisid'enrichir, avec notre approche, la plateforme E-care qui est dédiée au suivi et à la détection précoce de touteanomalie de l'état de patients atteints de maladies chroniques. Nous avons pu ainsi adapter facilement la plateformeE-care aux différentes expérimentations qui sont été menées notamment dans des EPHAD de la MutualitéFrançaise en Anjou-Mayenne, au CHU de Hautepierre et au CHUV à Lausanne.Les résultats de ces expérimentations ont montré l'efficacité de l'approche proposée. L'adaptation de la plateformepar rapport au domaine et au mode d'intervention de chacune de ces expérimentations se limite à de la simpleconfiguration. De plus, l'approche proposée a suscité l'intérêt du personnel médical par rapport à l'organisation de lacollecte des données, qui tient compte du contexte du patient, et par rapport à l'exploitation des connaissancesmédicales qui apporte aux professionnels de santé une assistance pour une meilleure prise de décision. / To support health professionals in their clinical processes, several monitoring and medical care systems have beenbuilt and deployed in the hospital setting. These systems are mainly used to collect medical data on patients,analyze and present the outcomes in different ways. They represent support and assistance to health professionalsin their decision making regarding the evolution in the health status of the patients followed. The use of suchsystems always requires an adaptation to both the medical field and the mode of intervention. It is necessary, in ahospital setting, to adapt and evolve these systems in a simple manner, limiting any corrective or evolutionarymaintenance. Moreover, these systems should be able to consider dynamically the domain knowledge from medicalexperts.To meet these requirements, we proposed an approach for the construction of a medical decision support system(MDSS). This MDSS can adapt to the medical field and to the appropriate mode of intervention to assist healthprofessionals in their clinical processes. This approach allows especially the organization of the medical datacollection by taking into account the patient¿s context, the ontology-based knowledge representation of the domainand permits the exploitation of the medical guidelines and the clinical experience.In continuity of our research team¿s previous work, we chose to expand with our approach, the E-care platformwhich is dedicated to monitoring and early detection of any abnormality of the health status of patients with chronicdiseases. We were able to adapt easily the E-care platform for the various experiments that have been conducted,including EPHAD of the Mutualité Française in Anjou-Mayenne, Hautepierre hospital and Lausanne hospital(CHUV).The outcomes of these experiments have shown the effectiveness of the proposed approach. Where, the adaptationof the platform regarding to the domain and mode of intervention of each of these experiments is limited to thesimple configuration. Furthermore, the proposed approach has attracted the interest of the medical staff regardingthe organization of the medical data collection, and the exploitation of the medical knowledge which bringsassistance to the health professionals for better decision making.
|
5 |
Einsatz numerischer Simulationen für einen Vergleich von Stentgrafts in der endovaskulären Gefäßmedizinvon Sachsen, Sandra 02 September 2015 (has links) (PDF)
Der Einsatz numerischer Simulationen zur Bearbeitung klinischer Fragestellungen ist eine innovative Vorgehensweise. Im Rahmen der vorliegenden Arbeit wurde eine Methode zur Auswertung von Ergebnissen einer Finite-Elemente-Analyse zum Stentgraftverhalten konzipiert, implementiert und im Rahmen einer deutschlandweiten Benutzerstudie getestet. Für einen Vergleich unterschiedlicher Stentgraftkonfigurationen im Kontext mit dem patientenspezifischen Gefäß wurden Stentgraftbewertungsgrößen eingeführt. Hierzu gehören die Fixierungskraft und der Kontaktstatus zwischen Stentringen und Blutgefäßbestandteilen. Für eine Bereitstellung der Ergebnisgrößen im gefäßmedizinischen Arbeitsumfeld wurde eine graphische Mensch-Maschine-Schnittstelle entwickelt. Diese ermöglicht eine quantitative und qualitative Auswertung von Stentgraftbewertungsgrößen. Hierfür wurden Module zur automatisierten Auswertung von Fixierungskräften sowie zur 2D- und 3D- Ergebnisvisualisierung implementiert. Im Rahmen der Benutzerstudie wurde die Anwendung der entwickelten Methode für die Ermittlung des Einsatzpotenzials numerischer Simulationen zur Unterstützung der Stentgraftauswahl demonstriert. Im Ergebnis wurde als wesentliches Einsatzpotenzial die Festlegung eines Mindestmaßes an Überdimensionierung, die Optimierung der Schenkellänge sowie der Ver- gleich unterschiedlicher Stentgraftdesigns ermittelt. Weiterhin konnten grundlegende Anforderungen an ein System zur Generierung und Bewertung von Stentgraftkonfigurationen im klinischen Alltag definiert werden. Zu den wesentlichen Funktionen, die der Implanteur für einen Vergleich von Stentgrafts benötigt, zählen eine Übersichtskarte zu farbkodiertem Migrationsrisiko pro Stentgraft und Landungszone, die Visualisierung des Abdichtungszustandes der Stentkomponenten sowie die Darstellung von Stentgraft- und Gefäßdeformationen im 3D-Modell.
|
6 |
Σχεδιασμός ανάπτυξη και εφαρμογή συστήματος υποστήριξης της διάγνωσης επιχρισμάτων θυρεοειδούς δεδομένων βιοψίας με λεπτή βελόνη FNA με χρήση εξελιγμένων μεθόδων εξόρυξης δεδομένωνΖούλιας, Εμμανουήλ 17 September 2012 (has links)
Σκοπός της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη ενός ολοκληρωμένου συστήματος υποστήριξης της διάγνωσης (Decision Support System - DSS) με χρήση μεθόδων εξόρυξης δεδομένων για την ταξινόμηση επιχρισμάτων βιοψίας με λεπτή βελόνα (Fine Needle Aspiration - FNA). Δύο κατηγορίες επιλέχθηκαν για τα δείγματα FNA: καλοήθεια και κακοήθεια. Το σύστημα αυτό αποτελείται από τις ακόλουθες βαθμίδες: 1) συλλογής δεδομένων, 2) επιλογής δεδομένων, 3) εύρεσης κατάλληλων χαρακτηριστικών, 4) εφαρμογής ταξινόμησης με χρήση μεθόδων εξόρυξης δεδομένων. Επίσης, βασικός στόχος της παρούσας διδακτορικής διατριβής ήταν η βελτίωση της ορθής ταξινόμησης των ύποπτων επιχρισμάτων (suspicious), για τα οποία είναι γνωστή η αδυναμία της μεθόδου FNA να τα ταξινομήσει. Το σύστημα εκπαιδεύτηκε και ελέγχθηκε σε σχέση με το δείγμα για το οποίο είχαμε ιστολογικές επιβεβαιώσεις (ground truth). Για περιπτώσεις οι οποίες χαρακτηρίστηκαν ως μη κακοήθεις από την FNA, και για τις οποίες δεν είχαμε ιστολογικές επιβεβαιώσεις, το δείγμα προέκυψε από την συνεκτίμηση και άλλων κλινικών, εργαστηριακών και απεικονιστικών εξετάσεων.
Στα πλαίσια της παρούσας διδακτορικής διατριβής συλλέχθηκαν εξετάσεις FNA θυρεοειδούς από το Εργαστήριο Παθολογοανατομίας του Α’ Τμήματος Παθολογίας της Ιατρικής Σχολής του Πανεπιστημίου Αθηνών. Δεδομένου ότι το εν λόγω εργαστήριο λειτουργεί και σαν κέντρο αναφοράς, σημαντικός αριθμός των δειγμάτων εστάλησαν εκεί και από άλλα Εργαστήρια Παθολογοανατομίας για επανέλεγχο. Το αρχειακό υλικό ήταν πολύ καλά ταξινομημένο σε χρονολογική σειρά αλλά ήταν σε έντυπη μορφή. Αρχικά πραγματοποιήθηκε η ανάλυση απαιτήσεων για τη δομή και το σχεδιασμό της βάσης δεδομένων. Με βάση τα στοιχεία από την τεκμηριωμένη διάγνωση σχεδιάστηκε και αναπτύχθηκε προηγμένο σύστημα για την κωδικοποίηση και αρχικοποίηση των δεδομένων. Με τη βοήθεια του σχεδιασμού και ανάλυσης απαιτήσεων αναπτύχθηκε και υλοποιήθηκε η βάση δεδομένων στην οποία αποθηκεύτηκαν τα δεδομένα προς επεξεργασία. Παράλληλα, με το σχεδιασμό της βάσης έγινε και η προεργασία για το σχεδιασμό και την ανάλυση απαιτήσεων του γραφικού περιβάλλοντος εισαγωγής στοιχείων. Λαμβάνοντας υπόψη ότι το σύστημα θα μπορούσε να χρησιμοποιηθεί και πέρα από τα πλαίσια της παρούσας διδακτορικής διατριβής λήφθηκε μέριμνα ώστε να παρέχεται ένα φιλικό και ευέλικτο προς το χρήστη περιβάλλον.
Σύμφωνα με τη μεθοδολογία προσέγγισης η οποία ακολουθήθηκε προηγήθηκε στατιστική ανάλυση των 9.102 συλλεχθέντων δειγμάτων FNA ως προς τα κυτταρολογικά χαρακτηριστικά τους και τις διαγνώσεις. Οι κυτταρολογικές διαγνώσεις των συγκεκριμένων δειγμάτων συσχετίστηκαν με τις ιστολογικές διαγνώσεις, στοχεύοντας στον υπολογισμό της πιθανής επίδρασης και συμβολής κάθε κυτταρολογικού χαρακτηριστικού σε μια ορθή ή ψευδή κυτταρολογική διάγνωση, έτσι ώστε να προσδιοριστούν οι πιθανές πηγές λανθασμένης διάγνωσης. Τα δείγματα τα οποία περιείχαν μόνο αίμα ή πολύ λίγα θυλακειώδη κύτταρα χωρίς κολλοειδές θεωρήθηκαν ανεπαρκή για τη διάγνωση. Οι βιοψίες εκτελέσθηκαν είτε στο Α’ τμήμα του Πανεπιστημίου Αθηνών (οι περισσότερες από τις περιπτώσεις με ψηλαφητούς όζους) είτε αλλού (κυρίως κάτω από την καθοδήγηση του κέντρου αναφοράς). Τα δείγματα επιστρωμένα σε πλακάκια, στάλθηκαν στο κέντρο αναφοράς από διάφορα νοσοκομεία, με διαφορετικά πρωτόκολλα σχετικά με τα κριτήρια εκτέλεσης βιοψίας FNA σε θυρεοειδή. Μετεγχειρητικές ιστολογικές επαληθεύσεις ήταν διαθέσιμες για 266 ασθενείς (κακοήθειες και μη). Το χαμηλό ποσοστό ιστολογικών επαληθεύσεων οφείλεται στην ετερογενή προέλευση των ασθενών και στην έλλειψη ολοκληρωμένης παρακολούθησης και επανελέγχου των ασθενών. Για την αξιολόγηση των δεδομένων χρησιμοποιήθηκαν περιγραφικά στατιστικά μεγέθη όπως, μέση τιμή, τυπική απόκλιση, ποσοστά, μέγιστο και ελάχιστο. Έγιναν επίσης και χ2 δοκιμές επιπέδου σημαντικότητας διαφόρων παραμέτρων για να ελεγχθεί η πιθανή συσχέτιση ή η ανεξαρτησία. Για τη συσχέτιση των κυτταρολογικών και των ιστολογικών διαγνώσεων και την αξιολόγηση των εργαστηριακών ευρημάτων, πέραν των περιγραφικών στατιστικών μεγεθών χρησιμοποιήθηκαν και υπολογισμοί της ευαισθησίας, της ειδικότητας, της συνολικής ακρίβειας, της αρνητικής και θετικής αξίας πρόβλεψης (negative and positive predictive value). Προκειμένου να καθοριστεί εάν μια κατηγορία ασθενειών συσχετίζεται ή όχι με συγκεκριμένες κυτταρολογικές παραμέτρους εφαρμόστηκε μέθοδος ελέγχου στατιστικής σημαντικότητας σε επίπεδο 5% (p < 0,05). Η διαδικασία ακολουθήθηκε για κάθε κατηγορία ασθενειών ή συνδυασμό τους και για κάθε παράμετρο των κυτταρολογικών και αρχιτεκτονικών στοιχείων της κυτταρολογικής διάγνωσης. Τα αποτελέσματα της στατιστικής ανάλυσης επέτρεψαν το διαχωρισμό των δεδομένων σε καλοήθη, κακοήθη, νεοπλασματικά, ύποπτα για κακοήθεια και οριακά με χαρακτηριστικά γνωρίσματα μεταξύ ενός καλοήθους και ενός νεοπλασματικού.
Στην συνέχεια αναπτύχθηκε σύστημα υποστήριξης της διάγνωσης χρησιμοποιώντας εξειδικευμένες μεθόδους εξόρυξης δεδομένων. Το σύστημα αποτελείται από τέσσερις βαθμίδες. Η πρώτη βαθμίδα αυτού του συστήματος είναι το περιβάλλον Συλλογής Δεδομένων στην οποία τα δεδομένα αποθηκεύονται στη βάση δεδομένων. Η Δεύτερη Βαθμίδα αυτού του συστήματος αφορά στην Επιλογή Δεδομένων. Σύμφωνα με την καταγραφή των απαιτήσεων, την εισαγωγή και τη ψηφιοποίηση των στοιχείων, δημιουργήθηκαν 111 χαρακτηριστικά για κάθε ασθενή (record). Τα περισσότερα χαρακτηριστικά είχαν τιμές δυαδικού τύπου, αποτυπώνοντας την ύπαρξη ή μη του κάθε χαρακτηριστικού, ενώ κάποιες άλλες είχαν τιμές τύπων αριθμών ή αλφαριθμητικών χαρακτήρων. Από τα 111 χαρακτηριστικά επιλέχθηκαν 60 χαρακτηριστικά τα οποία περιγράφουν τη δομή των επιχρισμάτων ενώ δημιουργήθηκαν άλλα 7 χαρακτηριστικά τα οποία αφορούσαν στην ομαδοποίηση άλλων χαρακτηριστικών.
Η Τρίτη Βαθμίδα του συστήματος αφορά στην εύρεση των Κατάλληλων Χαρακτηριστικών. Λόγω του αρχικά υψηλού αριθμού χαρακτηριστικών παραμέτρων (67 ανά περίπτωση), ήταν απαραίτητο να εξαλειφθούν οι χαρακτηριστικές παράμετροι που συσχετίζονταν γραμμικά ή δεν είχαν καμία διαγνωστική πληροφορία. H μέθοδος επιλογής χαρακτηριστικών εφαρμόστηκε πριν από την ταξινόμηση, με γνώμονα την ανεύρεση ενός υποσυνόλου των χαρακτηριστικών παραμέτρων που βελτιστοποιούν σε ακρίβεια τη διαδικασία ταξινόμησης. Εφαρμόστηκε η τεχνική επιπλέουσας πρόσθιας ακολουθιακά μεταβαλλόμενης επιλογής (SFFS). Ο αριθμός των δειγμάτων που χρησιμοποιήθηκαν είναι 2.036 (1.886 καλοήθειες και 150 κακοήθειες). Εξ αυτών, όλες οι κακοήθειες είναι ιστολογικά επιβεβαιωμένες. Επίσης, 140 καλοήθειες είναι ιστολογικά επιβεβαιωμένες με επάρκεια υλικού. Οι υπόλοιπες 1.726 καλοήθειες είναι επιβεβαιωμένες με συνεκτίμηση κλινικών, εργαστηριακών και απεικονιστικών ιατρικών εξετάσεων (υπέρηχοι κ.λπ.). Από τα 2.036 δείγματα, το 25% χρησιμοποιήθηκε για την επιλογή χαρακτηριστικών παραμέτρων, δηλαδή 37 περιπτώσεις κακοήθειας (Malignant) και 472 περιπτώσεις καλοήθειας (Non Malignant). Από την εφαρμογή της τεχνικής (SFFS) επιλέχθηκαν τελικά 12 χαρακτηριστικά ως βέλτιστα για την ταξινόμηση των δεδομένων FNA σε καλοήθη και κακοήθη.
Η Τέταρτη βαθμίδα επεξεργασίας είναι η Εφαρμογής Ταξινόμησης με χρήση Μεθόδων Εξόρυξης Δεδομένων ή Ταξινομητής. Για το σκοπό αυτό, επιλέχθηκε να εφαρμοστεί μια πληθώρα αξιόπιστων, καλά επιβεβαιωμένων και σύγχρονων μεθόδων εξόρυξης δεδομένων. Το σύστημα εκπαιδεύτηκε και ελέγχθηκε σε σχέση με το δείγμα για το οποίο είχαμε ιστολογικές επιβεβαιώσεις (ground truth). Η ανεξάρτητη εφαρμογή τεσσάρων αξιόπιστων μεθόδων, Δέντρων Αποφάσεων (Decision Trees), Τεχνιτών Νευρωνικών Δικτύων (Artificial Neural Network), Μηχανών Στήριξης Διανυσμάτων (Support Vector Machine), και Κ - κοντινότερου γείτονα (k-NN), έδωσε αποτελέσματα συγκρίσιμα με αυτά της FNA μεθόδου. Περαιτέρω βελτίωση των αποτελεσμάτων επιτεύχθηκε με την εφαρμογή της μεθόδου πλειοψηφικού κανόνα (Majority Vote - CMV) συνδυάζοντας τα αποτελέσματα από την εφαρμογή των τριών καλύτερων αλγορίθμων, ήτοι των Νευρωνικών Δικτύων, Μηχανών Στήριξης Διανυσμάτων και Κ - κοντινότερου γείτονα. Η τροποποιημένη μέθοδος τεχνητών αυτοάνοσων συστημάτων (Artificial Immune Systems – AIS) χρησιμοποιήθηκε για πρώτη φορά στην ταξινόμηση και παρουσίασε ιδιαίτερα βελτιωμένα αποτελέσματα στην ταξινόμηση των επιχρισμάτων τα οποία χαρακτηρίζονται ύποπτα (suspicious) από τους ειδικούς και αποτελούν το αδύναμο σημείο της μεθόδου FNA. Αυτές οι περιπτώσεις υπόνοιας αποτελούν ένα πολύ δύσκολο κομμάτι για τη διάκριση μεταξύ των καλοηθειών και των κακοηθειών, ακόμα και για τους πλέον ειδικούς. Επειδή όλα τα περιστατικά που χαρακτηρίζονται από την βιοψία FNA ως υπόνοιες αντιμετωπίζονται κλινικά σαν κακοήθειες, η εφαρμογή των αλγοριθμικών μεθόδων βελτιώνει αισθητά τη διαχείριση αυτών των περιπτώσεων μειώνοντας τον αριθμό των άσκοπων χειρουργικών επεμβάσεων θυρεοειδεκτομών. / The Aim of present thesis is the development of an integrated system for supporting diagnosis (Decision Support System - DSS) using for categorizing FNA biopsy smears. Two categories were selected for the FNA smears: malignant and nonmalignant. The system is constituted by the following stages of 1) data collection, 2) data selection 3) choice of suitable clinical and cytological features, 4) application of data mining method for the categorization of FNA biopsy smears. Furthermore a fundamental objective of the doctoral thesis was the improvement of suspect smears (suspicious) categorization, for the latter FNA Biopsy has a known restriction. The system had been trained and checked in relation to the sample that histologic evaluation existed (ground truth). For smears that characterized as nonmalignant by FNA and histological data we’re not available, complementary clinical, laboratory and imaging evaluations took into account in order to create the sample.
Τhe smears that were available in this thesis, were collected from FNA biopsies in Pathologoanatomy Laboratory, A’ Pathology Department, Medical School of Athens University. Given that the above referred laboratory is a reference center, an important number of FNA smears were sent to it from other laboratories for cross check. The examination files were sorted in chronological order, but there were in paper forms. The requirements for the formation and the design of database system were collected. Based on the material of the diagnosis an improved system was designed and developed for data initialization and coding. The database was developed based on the design and analysis of requirements; in this database data were stored for further investigation. Analysis of the graphical user interface design was performed in parallel to the database design. Taking into account that the system might be used after the completion of thesis, the graphical user interface was designed in order to be user friendly and flexible environment.
According to the methodological approach that was followed, the various cytological characteristic of 9102 FNA smears aspired among 2000-2004 was analyzed statistically. The cytological reports cross correlated with histological diagnoses, aiming to calculate the effect or contribution of each cytological characteristic to a false or true cytological diagnosis and to find the possible sources of erroneous diagnosis. The smears that have blood or a few follicular cells without colloid were characterized as insufficient for further diagnosis. The aspiration was performed either in Α’ department of Athens University (most of the cases with palpable nodules) or elsewhere (mainly under guidance of the reference center). The acquired smears being send to the reference center from various hospitals with different protocols concerning criteria to perform a thyroid FNA. Histological reports were available for 266 patients. The small number of histological verifications was due to the heterogeneity and the lack of patients files. For evaluating of data, descriptive statistic values were used like mean, standard deviation, percentage, maximum and minimum. In addition to that χ2 tests of significance were performed in order to check possible correlation or independence. For correlating cytological and histological diagnosis and evaluating laboratory findings, apart from the descriptive statistic parameters also calculated sensitivity, specificity, total accuracy, negative predictive value and positive predictive value. Method of statistical significance in the level of 5% (p < 0,05) was applied in order to specify if a disease was correlated to a cytological parameter. Those checks were performed for each disease category in correlation to any cytological parameter. Statistical analysis divided the smears into nonmalignant, malignant, neoplasms, suspicious for malignancy and borderline.
A diagnosis support system was implemented using data mining methods. The system is consisted of four stages. The First stage of the system is the Data Collection environment, which stores the data to the database. The Second stage of this system concerns the Selection of Data. User requirements concluded that 111 characteristics are needed to describe each patient (record). Most of them have binary values, presenting existence and not existence, other have alphanumeric and number values. Among them 60 were selected and 7 more are produced from grouping other characteristics. The final analysis reveals that 67 characteristics of the smears are capable for describing the structure of smears in general.
The Third stage of system concerns the Selection of Best Characteristics. Due to the high number of attributes (67 per case), it was essential to eliminate the characteristics that are connected linearly or do not bring diagnostics information. The choice of characteristics applied before the classification, having the aim of discovering a subset of characteristics that optimizes the process of classification. The technique of Sequential Float Forward Search (SFFS) was applied. The number of patients that used was 2,036 (1886 non malignancies and 150 malignancies). Among them all malignancies were histologically confirmed. In addition to that 140 no malignancies were histologically confirmed in correlation to evaluation of clinics, laboratorial and medical image actions (ultrasounds etc.). Among 2.036 smears the 25% used for characteristics selection, 37 smears of Malignant and smears of Non Malignant. The Sequential Float Forward Search (SFFS) Technique, choose the best 12 elements that they reveal high performance to FNA data categorization.
The Fourth stage is the Application of Classification using Data Mining Methods or in other words data mining method. For this aim a set of reliable, well confirmed but also modern methods applied. In addition to that the system was trained and was checked using the sample with histological verifications (ground truth). The independent application of four reliable methods, Decision Trees, Artificial Neural Network, Support Vector Machine, and k-NN, resulting to comparable outcomes concerning those of FNA. However, further improvement was achieved with the application of Majority (Majority Vote - CMV) using of previous results of three algorithms Artificial Neural Network, Support Vector Machine, and k-NN. The modified Artificial Immune System (AIS) was applied for first time. AIS presents particularly improved results for the categorization of smears, which are characterised “suspicious” by the experts and is a known weakness of FNA method. These cases constitute a very difficult part for the discrimination among non-malignant and malignant, even for a specialist. Since all these cases are faced clinically using FNA as malignancies, the application of an improved algorithmic method improves accordingly the management of these cases by decreasing the number of useless surgical thyroid operations.
|
7 |
Einsatz numerischer Simulationen für einen Vergleich von Stentgrafts in der endovaskulären Gefäßmedizin: Einsatzpotenzial, Anforderungsspezifikation und Mensch-Maschine-Schnittstellevon Sachsen, Sandra 30 June 2015 (has links)
Der Einsatz numerischer Simulationen zur Bearbeitung klinischer Fragestellungen ist eine innovative Vorgehensweise. Im Rahmen der vorliegenden Arbeit wurde eine Methode zur Auswertung von Ergebnissen einer Finite-Elemente-Analyse zum Stentgraftverhalten konzipiert, implementiert und im Rahmen einer deutschlandweiten Benutzerstudie getestet. Für einen Vergleich unterschiedlicher Stentgraftkonfigurationen im Kontext mit dem patientenspezifischen Gefäß wurden Stentgraftbewertungsgrößen eingeführt. Hierzu gehören die Fixierungskraft und der Kontaktstatus zwischen Stentringen und Blutgefäßbestandteilen. Für eine Bereitstellung der Ergebnisgrößen im gefäßmedizinischen Arbeitsumfeld wurde eine graphische Mensch-Maschine-Schnittstelle entwickelt. Diese ermöglicht eine quantitative und qualitative Auswertung von Stentgraftbewertungsgrößen. Hierfür wurden Module zur automatisierten Auswertung von Fixierungskräften sowie zur 2D- und 3D- Ergebnisvisualisierung implementiert. Im Rahmen der Benutzerstudie wurde die Anwendung der entwickelten Methode für die Ermittlung des Einsatzpotenzials numerischer Simulationen zur Unterstützung der Stentgraftauswahl demonstriert. Im Ergebnis wurde als wesentliches Einsatzpotenzial die Festlegung eines Mindestmaßes an Überdimensionierung, die Optimierung der Schenkellänge sowie der Ver- gleich unterschiedlicher Stentgraftdesigns ermittelt. Weiterhin konnten grundlegende Anforderungen an ein System zur Generierung und Bewertung von Stentgraftkonfigurationen im klinischen Alltag definiert werden. Zu den wesentlichen Funktionen, die der Implanteur für einen Vergleich von Stentgrafts benötigt, zählen eine Übersichtskarte zu farbkodiertem Migrationsrisiko pro Stentgraft und Landungszone, die Visualisierung des Abdichtungszustandes der Stentkomponenten sowie die Darstellung von Stentgraft- und Gefäßdeformationen im 3D-Modell.
|
Page generated in 0.126 seconds