Spelling suggestions: "subject:"medicinsk bildsegmentierung"" "subject:"imedicinsk bildsegmentierung""
1 |
Segmentering av medicinska bilder med inspiration från en quantum walk algoritm / Segmentation of Medical Images Inspired by a Quantum Walk AlgorithmAltuni, Bestun, Aman Ali, Jasin January 2023 (has links)
För närvarande utforskas quantum walk som en potentiell metod för att analysera medicinska bilder. Med inspiration från Gradys random walk-algoritm för bildbehandling har vi utvecklat en metod som bygger på de kvantmekaniska fördelar som quantum walk innehar för att detektera och segmentera medicinska bilder. Vidare har de segmenterade bilderna utvärderats utifrån klinisk relevans. Teoretiskt sett kan quantum walk-algoritmer erbjuda en mer effektiv metod för bildanalys inom medicin jämfört med traditionella metoder för bildsegmentering som exempelvis klassisk random walk, som inte bygger på kvantmekanik. Inom området finns omfattande potential för utveckling, och det är av yttersta vikt att fortsätta utforska och förbättra metoder. För närvarande kan det konstateras att det är en lång väg att vandra innan detta är något som kan appliceras i en klinisk miljö. / Currently, quantum walk is being explored as a potential method for analyzing medical images. Taking inspiration from Grady's random walk algorithm for image processing, we have developed an approach that leverages the quantum mechanical advantages inherent in quantum walk to detect and segment medical images. Furthermore, the segmented images have been evaluated in terms of clinical relevance. Theoretically, quantum walk algorithms have the potential to offer a more efficient method for medical image analysis compared to traditional methods of image segmentation, such as classical random walk, which do not rely on quantum mechanics. Within this field, there is significant potential for development, and it is of utmost importance to continue exploring and refining these methods. However, it should be noted that there is a long way to go before this becomes something that can be applied in a clinical environment.
|
2 |
Self-supervised pre-training of an attention-based model for 3D medical image segmentation / Självövervakad förberedande träning av en attention-baserad model för 3D medicinsk bildsegmenteringSund Aillet, Albert January 2023 (has links)
Accurate segmentation of anatomical structures is crucial for radiation therapy in cancer treatment. Deep learning methods have been demonstrated effective for segmentation of 3D medical images, establishing the current standard. However, they require large amounts of labelled data and suffer from reduced performance on domain shift. A possible solution to these challenges is self-supervised learning, that uses unlabelled data to learn representations, which could possibly reduce the need for labelled data and produce more robust segmentation models. This thesis investigates the impact of self-supervised pre-training on an attention-based model for 3D medical image segmentation, specifically focusing on single-organ semantic segmentation, exploring whether self-supervised pre-training enhances the segmentation performance on CT scans with and without domain shift. The Swin UNETR is chosen as the deep learning model since it has been shown to be a successful attention-based architecture for semantic segmentation. During the pre-training stage, the contracting path is trained for three self-supervised pretext tasks using a large dataset of 5 465 unlabelled CT scans. The model is then fine-tuned using labelled datasets with 97, 142 and 288 segmentations of the stomach, the sternum and the pancreas. The results indicate that a substantial performance gain from self-supervised pre-training is not evident. Parameter freezing of the contracting path suggest that the representational power of the contracting path is not as critical for model performance as expected. Decreasing the amount of supervised training data shows that while the pre-training improves model performance when the amount of training data is restricted, the improvements are strongly decreased when more supervised training data is used. / Noggrann segmentering av anatomiska strukturer är avgörande för strålbehandling inom cancervården. Djupinlärningmetoder har visat sig vara effektiva och utgör standard för segmentering av 3D medicinska bilder. Dessa metoder kräver däremot stora mängder märkt data och kännetecknas av lägre prestanda vid domänskift. Eftersom självövervakade inlärningsmetoder använder icke-märkt data för inlärning, kan de möjligen minska behovet av märkt data och producera mer robusta segmenteringsmodeller. Denna uppsats undersöker effekten av självövervakad förberedande träning av en attention-baserad modell för 3D medicinsk bildsegmentering, med särskilt fokus på semantisk segmentering av enskilda organ. Syftet är att studera om självövervakad förberedande träning förbättrar segmenteringsprestandan utan respektive med domänskift. Swin UNETR har valts som djupinlärningsmodell eftersom den har visat sig vara en framgångsrik attention-baserad arkitektur för semantisk segmentering. Under den förberedande träningsfasen optimeras modellens kontraherande del med 5 465 icke-märkta CT-scanningar. Modellen tränas sedan på märkta dataset med 97, 142 och 288 segmenterade skanningar av magen, bröstbenet och bukspottkörteln. Resultaten visar att prestandaökningen från självövervakad förberedande träning inte är tydlig. Parameterfrysning av den kontraherande delen visar att dess representationer inte lika avgörande för segmenteringsprestandan som förväntat. Minskning av mängden träningsdata tyder på att även om den förberedande träningen förbättrar modellens prestanda när mängden träningsdata är begränsad, minskas förbättringarna betydligt när mer träningsdata används.
|
3 |
Dealing With Speckle Noise in Deep Neural Network Segmentation of Medical Ultrasound Images / Hantering av brus i segmenteing med djupinlärning i medicinska ultraljudsbilderDaniel, Olmo January 2022 (has links)
Segmentation of ultrasonic images is a common task in healthcare that requires time and attention from healthcare professionals. Automation of medical image segmentation using deep learning solutions is fast growing field and has been shown to be capable of near human performance. Ultrasonic images suffer from low signal-to-noise ratio and speckle patterns, noise filtering is a common pre-processing step in non-deep learning image segmentation methods used to improve segmentation results. In this thesis the effect of speckle filtering of echocardiographic images in deep learning segmentation using U-Net is investigated. When trained with speckle reduced and despeckled datasets, a U-Net model with 0.5·106 trainable parameters saw an rage dice score improvement of +0.15 in the 17 out of 32 categories that were found to be statistically different compared to the same network trained with unfiltered images. The U-Net model with 1.9·106 trainable parameters saw a decrease in performance in only 5 out of 32 categories, and the U-Net model with 31·106 trainable parameters saw a decrease in performance in 10 out of 32 categories when trained with the speckle filtered datasets. No definite differences in performance between the use of speckle suppression and full speckle removal were observed. This result shows potential for speckle filtering to be used as a means to reduce the complexity required of deep learning models in ultrasound segmentation tasks. The use of the wavelet transform as a down- and up-sampling layer in U-Net was also investigated. The speckle patterns in ultrasonic images can contain information about the tissue. The wavelet transform is capable of lossless down- and up-sampling in contrast to the commonly used down-sampling methods, which could enable the network to make use textural information and improve segmentations. The U-Net modified with the wavelet transform shows slightly improved results when trained with despeckled datasets compared to the unfiltered dataset, suggesting that it was not capable of extracting any information from the speckle. The experiments with the wavelet transform were far from exhaustive and more research is needed for proper assessment. / Segmentering av ultraljudsbilder är en vanlig uppgift inom vården som kräver tid och uppmärksamhet från vårdpersonal. Automatisering av medicinsk bildsegmentering med djupinlärning är ett snabbt växande område och har visat kunna nå prestanda nära mänsklig nivå. Ultraljudsbilder har dålig signal-brusförhållande och speckle mönster, ofta bearbetas bilder med brusfiltrering när icke djupinlärningsmetoder används för segmentering för att förbättra resultat. Effekten av speckle-filtrering i ultraljudsbilder i djupinlärnings segmentering med U-Net undersöks i den här masterexamensuppsatsen. U-Net nätverket med 0.5·106 träningsbara parametrar presterade bättre när den tränades med speckle filtrerade dataset jämfört för med ofiltrerade bilder, men en ökning i dice-koefficienten av +0.15 i medel i de 17 kategorier av 32 som var statistikst signifikanta. En försämring av resultaten för U-Net nätverket med 1.9·106 träningsbara parametrar observerades i 5 av 32 kategorier, och en försämring av resultaten för U-Net nätverket med 31·106 träningsbara parametrar observerardes när de tränades med speckle filtrerade dataset i 10 av 32 kategorier. Inga skillnader i prestanda mellan användning av minskning av speckle och fullständig speckle borttagning observerades. Detta resultat visar att det finns potential för att använda speckle filtrering som en metod för att minska komplexiteten som kan krävas hos djupinlärningsnätverk inom ultraljudssegmentering. Användning av wavelet transformen som ett ned- och uppsamplings lager i U-Net undersöktes också. Speckle mönstren i ultraljudsbilder kan innehålla information om vävnaden. Wavelet transformen möjliggör ned- och uppsamplings av bilden utan informationsförlust till skillnad från de vanliga metoderna, vilket skulle kunna göra det möjligt för nätverket att utnyttja information om vävnadstexturen och förbättra segmenteringarna. U-Net nätverket som modifierades med wavelet transformen visar någorlunda bättre prestanda när den tränas med speckle filtrerade dataset jämfört med ofiltrerade dataset. Det tyder på att nätverket inte kunde utnyttja någon information från speckle mönstren. Wavelet transform experimenten var ej uttömmande och mer forskning behövs för en korrekt bedömning.
|
Page generated in 0.1243 seconds