Spelling suggestions: "subject:"medidas maximizante"" "subject:"medidas maximizadores""
1 |
Medidas maximizadoras para sistemas dinâmicos fracamente hiperbólicosSouza, Rafael Rigão January 2004 (has links)
Dado um sistema dinâmico g : M → M e uma função A : M → R, chamada de observável, uma medida invariante v que satisfaz ƒ Adv = sup{ RAdµ ; µ ´e invariante para g} é chamada uma medida maximizadora. Neste trabalho vamos analisar medidas maximizadoras em duas classes de sistemas dinãmicos que apresentam pontos fixos indiferentes: Na primeira classe analisada, unidimensional, o sistema dinâmico ƒ é dado por um mapa expansor de grau 2 definido em [0, 1], apresentando derivada maior que 1 em todos os pontos com exceção do ponto fixo 0, onde tem derivada 1. O observável A é dado por uma função α-Hölder em cada ramo injetor, monótona em uma pequena vizinhança de zero. Na segunda classe analisada, bidimensional, o sistema dinâmico B é um mapa bijetor definido em [0, 1)×[0, 1) com o auxílio de uma função ƒ da classe anterior, apresentando ponto fixo indiferente na origem. Trata-se de uma variante fracamente hiperbólica da Baker Map. O observável A agora é uma função α-Hölder, e obedece a uma condição semelhante à monotonicidade do caso unidimensional em um vizinhança de (0, 0). Em ambos os casos mostraremos que a medida maximizadora, se for única, será uma medida unicamente ergódica. O passo mais importante nesta direção, que constitui-se em um resultado de interesse próprio, e que tomará a maior parte de nosso tempo, será, nos dois casos, a obtenção e o estudo da regularidade de uma função a valores reais S, chamada de função de subação, que obedecerá a desigualdade S o g ≥ S + A − m. Em ambos os casos mostraremos que S existe e é α-Hölder-contínua.
|
2 |
Medidas maximizadoras para sistemas dinâmicos fracamente hiperbólicosSouza, Rafael Rigão January 2004 (has links)
Dado um sistema dinâmico g : M → M e uma função A : M → R, chamada de observável, uma medida invariante v que satisfaz ƒ Adv = sup{ RAdµ ; µ ´e invariante para g} é chamada uma medida maximizadora. Neste trabalho vamos analisar medidas maximizadoras em duas classes de sistemas dinãmicos que apresentam pontos fixos indiferentes: Na primeira classe analisada, unidimensional, o sistema dinâmico ƒ é dado por um mapa expansor de grau 2 definido em [0, 1], apresentando derivada maior que 1 em todos os pontos com exceção do ponto fixo 0, onde tem derivada 1. O observável A é dado por uma função α-Hölder em cada ramo injetor, monótona em uma pequena vizinhança de zero. Na segunda classe analisada, bidimensional, o sistema dinâmico B é um mapa bijetor definido em [0, 1)×[0, 1) com o auxílio de uma função ƒ da classe anterior, apresentando ponto fixo indiferente na origem. Trata-se de uma variante fracamente hiperbólica da Baker Map. O observável A agora é uma função α-Hölder, e obedece a uma condição semelhante à monotonicidade do caso unidimensional em um vizinhança de (0, 0). Em ambos os casos mostraremos que a medida maximizadora, se for única, será uma medida unicamente ergódica. O passo mais importante nesta direção, que constitui-se em um resultado de interesse próprio, e que tomará a maior parte de nosso tempo, será, nos dois casos, a obtenção e o estudo da regularidade de uma função a valores reais S, chamada de função de subação, que obedecerá a desigualdade S o g ≥ S + A − m. Em ambos os casos mostraremos que S existe e é α-Hölder-contínua.
|
3 |
Medidas maximizadoras para sistemas dinâmicos fracamente hiperbólicosSouza, Rafael Rigão January 2004 (has links)
Dado um sistema dinâmico g : M → M e uma função A : M → R, chamada de observável, uma medida invariante v que satisfaz ƒ Adv = sup{ RAdµ ; µ ´e invariante para g} é chamada uma medida maximizadora. Neste trabalho vamos analisar medidas maximizadoras em duas classes de sistemas dinãmicos que apresentam pontos fixos indiferentes: Na primeira classe analisada, unidimensional, o sistema dinâmico ƒ é dado por um mapa expansor de grau 2 definido em [0, 1], apresentando derivada maior que 1 em todos os pontos com exceção do ponto fixo 0, onde tem derivada 1. O observável A é dado por uma função α-Hölder em cada ramo injetor, monótona em uma pequena vizinhança de zero. Na segunda classe analisada, bidimensional, o sistema dinâmico B é um mapa bijetor definido em [0, 1)×[0, 1) com o auxílio de uma função ƒ da classe anterior, apresentando ponto fixo indiferente na origem. Trata-se de uma variante fracamente hiperbólica da Baker Map. O observável A agora é uma função α-Hölder, e obedece a uma condição semelhante à monotonicidade do caso unidimensional em um vizinhança de (0, 0). Em ambos os casos mostraremos que a medida maximizadora, se for única, será uma medida unicamente ergódica. O passo mais importante nesta direção, que constitui-se em um resultado de interesse próprio, e que tomará a maior parte de nosso tempo, será, nos dois casos, a obtenção e o estudo da regularidade de uma função a valores reais S, chamada de função de subação, que obedecerá a desigualdade S o g ≥ S + A − m. Em ambos os casos mostraremos que S existe e é α-Hölder-contínua.
|
4 |
Sobre existência de estados de equilíbrio e limite em temperatura zero para shifts de Markov topologicamente mixing / On equilibrium states existence and zero temperature limit for topologically mixing Markov shifts.Cubides, Victor Andres Vargas 16 October 2015 (has links)
O objetivo desta tese é demonstrar que para um subshift de Markov topologicamente transitivo com alfabeto enumerável e um potencial ƒ com pressão de Gurevic finita e variação limitada (ƒ) < ∞, existe um único estado de equilíbrio µtƒ para cada t > 1, e a família (µtƒ)t>1 tem um ponto de acumulação quando t > ∞. Além disso se também supomos que o ƒ é um potencial de Markov, demonstramos que a família de estados de equilíbrio (µtƒ)t>1 converge quando t > ∞. Finalmente demonstramos a continuidade em ∞ da entropia com respeito ao parâmetro t. Estes resultados não dependem da hipótese de existência de medidas de Gibbs. / The aim of this thesis is to prove that for a topologically transitive Markov subshift with countable alphabet and a summable potential ƒ with finite topological pressure Gurevic and bounded variation (ƒ) < ∞, there exists an equilibrium state µtƒ tf for each t > 1 and the family of equilibrium states (µtƒ)t>1 associated to each potential tf has an accumulation point at t > ∞. Moreover if we also assume that ƒ is a Markov potential we prove that the equilibrium states family (µtƒ)t>1 converges when t > ∞. Finally we prove the continuity at ∞ of the entropy with respect to the parameter t. These results do not depend on assuming the existence of Gibbs measures.
|
5 |
Sobre existência de estados de equilíbrio e limite em temperatura zero para shifts de Markov topologicamente mixing / On equilibrium states existence and zero temperature limit for topologically mixing Markov shifts.Victor Andres Vargas Cubides 16 October 2015 (has links)
O objetivo desta tese é demonstrar que para um subshift de Markov topologicamente transitivo com alfabeto enumerável e um potencial ƒ com pressão de Gurevic finita e variação limitada (ƒ) < ∞, existe um único estado de equilíbrio µtƒ para cada t > 1, e a família (µtƒ)t>1 tem um ponto de acumulação quando t > ∞. Além disso se também supomos que o ƒ é um potencial de Markov, demonstramos que a família de estados de equilíbrio (µtƒ)t>1 converge quando t > ∞. Finalmente demonstramos a continuidade em ∞ da entropia com respeito ao parâmetro t. Estes resultados não dependem da hipótese de existência de medidas de Gibbs. / The aim of this thesis is to prove that for a topologically transitive Markov subshift with countable alphabet and a summable potential ƒ with finite topological pressure Gurevic and bounded variation (ƒ) < ∞, there exists an equilibrium state µtƒ tf for each t > 1 and the family of equilibrium states (µtƒ)t>1 associated to each potential tf has an accumulation point at t > ∞. Moreover if we also assume that ƒ is a Markov potential we prove that the equilibrium states family (µtƒ)t>1 converges when t > ∞. Finally we prove the continuity at ∞ of the entropy with respect to the parameter t. These results do not depend on assuming the existence of Gibbs measures.
|
Page generated in 0.0605 seconds