• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 543
  • 91
  • 44
  • 40
  • 26
  • 26
  • 26
  • 26
  • 26
  • 26
  • 16
  • 13
  • 10
  • 8
  • 5
  • Tagged with
  • 937
  • 894
  • 174
  • 137
  • 97
  • 81
  • 81
  • 80
  • 65
  • 62
  • 46
  • 45
  • 45
  • 43
  • 43
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
501

In vivo super-resolution live-cell RESOLFT-microscopy of Drosophila melanogaster and Arabidopsis thaliana

Schnorrenberg, Sebastian 15 August 2017 (has links)
No description available.
502

Nitrocompostos e extratos orgânicos de partículas aéreas são indutores de toxicidade genética em células somáticas de Drosophila melanogaster

Dihl, Rafael Rodrigues January 2008 (has links)
Considerando os diversos efeitos adversos que a matéria particulada (MP) atmosférica e os contaminantes químicos ambientais causam aos ecossistemas e à saúde humana, o presente estudo procurou avaliar, o potencial mutagênico e recombinogênico de (i) extratos orgânicos de MP10, com diâmetro <10Xm e de particulados totais em suspensão (PTS), coletados na região metropolitana de Canoas nos meses de Novembro de 2003 (primavera) e Janeiro de 2004 (verão) — que sofre a influência de diversas indústrias e principalmente do intenso tráfego veicular da BR 116 e (ii) quatro nitro-derivados de hidrocarbonetos aromáticos policíclicos (NHAPs), ambientalmente importantes — 1-Nitronaftaleno (1NN), 1,5-Dinitronaftaleno (1,5DNN), 9-Nitroantraceno (9NA) e 2-Nitrofluoreno (2NF). Para tanto foi empregado o Teste para Detecção de Mutação e Recombinação Somática (SMART) em Drosophila melanogaster, que permite a detecção simultânea de mutação gênica e cromossômica, assim como de eventos relacionados com recombinação mitótica — possibilitando quantificar a contribuição deste último parâmetro genético para a genotoxicidade total dos contaminantes. No que se refere à MP não foram observados resultados positivos na coleta de verão no cruzamento padrão, embora nas amostras da primavera tenham sido obtidos dois resultados positivos, referentes às amostras cruas (100%) de MP10 e de PTS. Entretanto, enquanto as genotoxinas presentes na MP10 induziram exclusivamente recombinação homóloga, as amostras de PTS apresentaram aproximadamente 62% de ação recombinacional e 38% de atividade mutacional, gênica e/ou cromossômica. Esta resposta genotóxica diferencial pode ser relacionada a diferenças na composição dos contaminantes presentes nestas duas frações de partículas aéreas. Adicionalmente no cruzamento aprimorado as amostras coletadas na primavera — MP10 e PTS — induziram aumentos significativos na freqüência de clones mutantes nas doses de 50 e 100% — que são induzidos exclusivamente por recombinação mitótica e estão relacionadas à presença de genotoxinas geradas no processo de metabolização via citocromo P450. Na coleta de verão foi diagnosticado um resultado positivo para o 100% de MP10, que não foi detectado no cruzamento padrão para esta mesma estação, indicando que os altos níveis de enzimas de metabolização, característicos deste cruzamento, funcionaram como mecanismo de ativação das genotoxinas presentes na fração orgânica das partículas inaláveis. Os resultados obtidos para os nitrocompostos apontaram para efeitos positivos no genótipo trans-heterozigoto para os quatro NHAPs avaliados, produzindo aumentos estatisticamente significativos na freqüência total de manchas, que representa a genotoxicidade total da amostra. Nos indivíduos heterozigotos para o cromossomo balanceador TM3, apenas o 1,5DNN induziu aumentos significativos no total de manchas — indicando que além da ação recombinacional o 1,5DNN também induz mutação. Nos demais compostos — 1NN, 9NA e 2NF — a ausência de diferenças significantes em relação aos controles negativos no genótipo heterozigoto para o cromossomo TM3 é indicativo de que a ação tóxico-genética destes NHAPs deve-se basicamente à indução de recombinação mitótica entre cromossomos homólogos. O 1NN foi o composto com a maior potência genotóxica, induzindo cerca de 10 clones /105 células/ mM — seguido pelo 9NA. Observa-se também que o 1NN é cerca de 333 vezes mais genotóxico que os compostos igualmente menos potentes — 1,5DNN e 2NF. Esta diferença em termos de potência genotóxica pode ser correlacionada à presença de um grupo nitro no 1NN e de dois grupos nitro no seu correspondente 1,5 DNN — sugerindo que o primeiro é provavelmente mais acessível à transformação metabólica do que o segundo. Todas estas observações validam as investigações voltadas para a caracterização dos extratos orgânicos e dos contaminantes ambientais quanto a sua ação como indutores de recombinação homóloga (RH) in vivo. A RH é um evento associado a diferentes etapas do processo de tumorigênese, e a poluição aérea é responsável por ~10,7% dos casos de câncer de pulmão e ~1% de outros tipos de câncer — o que torna a avaliação da indução de RH fundamental para a obtenção de dados referentes ao risco genético imposto por contaminantes ambientais. / Considering the several adverse effects of atmospheric particulate matter (PM) and of the environment chemical contaminants on the ecosystems and human health, the present study aimed to assess the mutagenic and recombinagenic potential of PM10 organic extracts measuring less than 10 μm and of total suspended particulates (TSP) collected in the Greater Canoas region, in November 2003 (spring) and January 2004 (summer). The region is under the influence of diverse industrial activities and most specially of intense motor vehicle traffic from BR116. This study also investigated four nitropolycyclic aromatic hydrocarbons (NPAHs) of environmental relevance: 1- Nitronaphthalene (1NN); 1,5-Dinitronaphthalene (1,5DNN); 9-Nitroanthracene (9NA); and 2-Nitrofluorene (2NF). The Somatic Mutation and Recombination Test (SMART) in Drosophila melanogaster was used. The assay allows the simultaneous detection of gene and chromosome mutations, as well as of events related to mitotic recombination, which affords to quantify the contribution of this last genetic parameter to total genotoxicity of contaminants. As regards PM, no positive results were observed in the standard cross for the summer collection, although the spring samples generated two positive results for the raw (100%) PM10 and TSP samples. Nevertheless, while the genotoxins present in PM10 induced only homologous recombination, the TSP samples presented roughly 62% of recombinational activity and 38% of gene and/or chromosome mutation activity. This distinct genotoxic response may be related to the different composition of contaminants present in these two fractions of airborne particles. Additionally, the spring samples — PM10 and TSP, at the 50 and 100% doses — induced significant increases in mutant clone frequency in the high-bioactivation cross. These mutant clones are induced exclusively by mitotic recombination and are related to the presence of genotoxins produced in the cytochrome P450 metabolization process. For the summer samples, positive results were recorded for 100% of PM10, which was not detected in the standard cross for the same season, which suggests that the high levels of metabolization enzymes, typical of this cross, For the summer samples, positive results were recorded for 100% of PM10, which was not detected in the standard cross for the same season, which suggests that the high levels of metabolization enzymes, typical of this cross, work as an activation mechanism for genotoxins present in the organic fraction of inhalable particles. The results obtained for the nitrocompounds point to the positive effects on the trans-heterozygous for the four NPAHs assessed, which produced statistically significant increases in total spot frequencies, representing the total genotoxicity of the sample. Concerning the balancer chromosome TM3, only 1,5DNN induced significant increases in total spot frequencies in heterozygous individuals, which also indicated that apart from the recombinational action, 1,5DNN also induces mutation. For the other compounds, 1NN, 9NA, and 2NF, the absence of significant differences in comparison to the negative controls in the heterozygote genotype for chromosome TM3 indicates that the genotoxic action of these NPAHs is essentially due to the mitotic recombination between homologous chromosomes. 1NN was the compound with the highest genotoxic potential, inducing approximately 10 clones /105 cells/ mM, followed by 9NA. It was also observed that 1NN is roughly 333 times more genotoxic than the equally less potent compounds — 1,5DNN and 2NF. This difference, in terms of genotoxic potential, may be related to the presence of one nitro group in 1NN and to two nitro groups in its counterpart, 1,5DNN. This suggests that the former is probably more susceptible to metabolic transformation than the latter. All these observations validate the investigations directed towards the characterization of organic extracts and of the environmental contaminants as regards their action as inducers of in vivo homologous recombination (HR). HR is an event associated to the different stages of tumorigenesis, and airborne pollution is accountable for ~10.7% of lung cancer cases and ~1% of other types of cancer — which makes the evaluation of HR essential to obtain data of the genetic risk posed by environmental contaminants.
503

Investigation of the Decision-Making and Time-Keeping Abilities of SIFamide Signalling in Drosophila Melanogaster

Schweizer, Justine January 2017 (has links)
Drosophila melanogaster is an invaluable model organism for the study of basic neuroscience. Using two previously characterized mating behaviours (Longer- and Shorter-Mating Duration), this research aims to further our knowledge of the neural circuit involved in each, and shed light on the mechanism by which four SIFamide producing neurons are involved in both. We also seek to investigate the involvement of core circadian clock genes in interval timing mechanisms. To do so, we investigated the populations of SIFamide receptor expressing neurons necessary for each behaviour and studied the contribution of circadian clock genes within the SIFamide signalling pathway. Our main experimental approach consisted of population specific knock-downs of the SIFamide receptor, the impact of which was assessed using a simple behavioural assay. This approach was complemented by rescue experiments and feminization of neurons. Finally, our investigation of the circadian clock was mediated by circadian gene knock-downs in SIFamide expressing neurons. Our results show that SIFamide signalling for each mating behaviour is mediated by segregated signalling to different, non male-specific SIFamide receptor expressing neuronal populations. We further demonstrate that SIFamide expressing neurons are not involved in the interval timing mechanism of these mating behaviours via core circadian gene contribution. This work presents preliminary results towards the investigation of a novel model of decision-making via neuronal signalling.
504

The Effects of Sexual Selection and Ecology on Adaptation and Diversification in Drosophila Melanogaster

Arbuthnott, Devin W. January 2014 (has links)
Sexual selection is pervasive in nature and plays an important role in the evolution of biological diversity both within and among sexual species. However, while we have a good understanding of how competition for reproductive opportunities and mate choice can drive the evolution of exaggerated secondary sexual traits, much less is known about how sexual selection interacts with other forms of natural selection and the consequences such interactions may have for adaptation to novel environments, the purging of deleterious mutations, and population divergence/speciation. In my thesis, I carried out a series of experiments with the fruit fly Drosophila melanogaster to test hypotheses regarding the operation of sexual selection and to broaden our understanding of how sexual selection may influence adaptation and diversification. Theory suggests that natural and sexual selection may align to promote adaptation and the purging of deleterious mutations, although the harm imposed by sexual conflict may counter this. In two separate experiments, I find no evidence that sexual selection promotes adaptation to a novel environment and, rather than aligning with natural selection, I find that the effects of sexual conflict may cause sexual selection to hamper the purging of deleterious mutations. With respect to diversification, sexual conflict has been suggested to be an important, non-ecological driver of population divergence. However, the traits involved in sexual conflict may also affect nonsexual fitness and natural selection may therefore act to constrain diversification. Using an evolution experiment, I demonstrate ecologically-dependent parallel evolution of traits involved in sexual conflict, providing evidence for ecology’s importance in divergence via sexual conflict. Overall, my work has shed light on the interaction of natural and sexual selection and the consequences this may have beyond the evolution of exaggerated sexual displays and armaments.
505

The cloning of polyhomeotic, a complex Drosophila locus required for segment determination and cuticular differentiation

Freeman, John Douglas January 1987 (has links)
The polyhomeotic (ph) locus of Drosophila melanogaster has been characterized genetically. Early studies showed that ph is a member of the Polycomb (Pc) group. These genes have similar phenotypes and are required for normal segment determination. Recent analyses of amorphic ph mutations show that the ph locus is complex, has a strong maternal effect and plays a role in cuticular development. To test the function of ph at the molecular level, the cloning of the ph locus was undertaken. One strain had been shown to contain a P element insertion near ph. A genomic library was prepared from this strain and a recombinant phage containing this P element insertion was isolated by transposon tagging. The DNA flanking the insertion was used as a starting point for a chromosomal walk. A series of overlapping phage spanning 170 kilobases was isolated. Southern blot analysis was used to determine the locations of important deficiency breakpoints within the region covered by the walk. A distance of approximately 35 kb was shown to separate the two deficiency breakpoints which include ph. This interval was found to contain rearrangements in four of the seven ph alleles which were examined by Southern blot analysis. The interval also contains a repeated sequence. The relationship between the genetic and molecular structure of ph is discussed. / Science, Faculty of / Zoology, Department of / Graduate
506

A genetic analysis of mutagen-sensitive mutations on the second chromosome of Drosophila melanogaster

Henderson, Daryl Stewart January 1987 (has links)
Mutagen-sensitive (mus) mutations in Drosophila melanogaster render developing flies hypersensitive to the lethal effects of DNA-damaging agents. In general, mus mutations identify DNA repair-related genes. In this study, 5 new second chromosome mus mutations (mus205B¹, mus208B¹, mus209B¹, mus210B¹ and mus211B¹), selected on the basis of sensitivity to methyl methanesulfonate (MMS), were characterized using a variety of genetic tests. One test measured the MMS-sensitivity of double mutant mus strains compared to their component single mutants. Mutant interactions were examined in 8 double mus and in 2 triple mus strains containing combinations of mus201D¹, mus205B¹, mus208B¹, mus210B¹ and mus211B¹ (or mus211B²). These analyses have revealed predominantly synergistic and epistatic responses to MMS. Taken together with the findings of previous genetic and biochemical studies of Drosophila mus strains, these results suggest that 3 major repair pathways may operate in flies to correct damage caused by MMS. Mutagen cross-sensitivity data and the results of the interaction studies suggest that mus mutations might serve as rapid and sensitive bioassays of somatic genotoxicity caused by mutagens and carcinogens. To explore this possibility, a simple mutagen test system was devised employing triple mutant mus strains. One strain (mus208B¹ mus210B¹ mus211B²) was tested for sensitivity to 14 mutagens/carcinogens and 2 non-carcinogens. Eleven of the mutagens/carcinogens were readily detected as genotoxic. Both non-carcinogens were non-genotoxic. These preliminary results demonstrate the feasibility (and some limitations) of the proposed somatic genotoxicity assay and emphasize the need for further test validation using a larger chemical data base. The temperature-sensitive lethal mutation mus209B¹ was subjected to extensive genetic analyses and to temperature shift experiments during development. This locus was found to encode a product(s) that (1) is essential for viability at virtually all pre-imaginal developmental stages (the latter half of pupation appears to be an exception), (2) is necessary for wildtype levels of resistance to the genotoxic effects of MMS and ionizing radiation, and (3) is required for female fertility. Confirmation of the pleiotropic nature of this mutation was obtained by meiotic and cytogenetic mapping studies and by complementation tests with a series of allelic mutations. The mus209B¹ phenotypes are similar to ones conferred by mutations in Drosophila and yeast that disrupt various aspects of chromosome metabolism. In this context, some possible roles for mus209B¹ are discussed. / Science, Faculty of / Zoology, Department of / Graduate
507

Mechanism and function of cell deformability / 細胞変形能の制御機構と生物機能

Shiomi, Akifumi 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22473号 / 工博第4734号 / 新制||工||1739(附属図書館) / 京都大学大学院工学研究科合成・生物化学専攻 / (主査)教授 梅田 眞郷, 教授 森 泰生, 教授 秋吉 一成 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
508

Avoidance learning in Drosophila melanogaster

Lucas, William 01 January 1973 (has links)
The importance of showing that Drosophila are capable of learning an instrumental response would, with the information already known from genetic studies, enable researchers to possibly isolate the genetic basis of a simple learning process and thus gain greater insight into this phenomenon. If a reliable technique can be found for earning in Drosophila, a new field of research would be opened which could greatly add to our knowledge of the evolution of behavior. The following two studies attempted to demonstrate that Drosophila can learn and also investigated which system, vision or olfaction, serves best in this capacity.
509

Circadian Regulation of Behavior and Physiology in Drosophila melanogaster

O’Connor, Reed M. January 2020 (has links)
Circadian systems drive daily oscillations in physiology in organisms from bacteria to humans. These oscillations are coordinated by specific changes in environmental cues, the most important of which is light. In animals, circadian regulation of brain function creates rhythmic patterns in behaviors like sleep. Circadian dysregulation is a common feature of many human diseases and environmental causes of circadian disruption increase susceptibility to many diseases including cancer. Importantly, circadian disruption is also commonly seen in hospitalized patients, which could have negative effects on health outcomes. Understanding the basic biology of circadian-regulatory systems and their physiological functions is essential for identifying the impact of circadian rhythms on human health. This dissertation describes a body of work using the fruit fly Drosophila melanogaster to better understand circadian regulation and its impact on behavior and physiology.
510

The role of muscle-tendon cell interaction during epithelial notum morphogenesis of Drosophila melanogaster

Manieu Seguel, Catalina Paz January 2018 (has links)
Grado de Doctora en Ciencias biomédicas / Tissue-tissue interaction is essential to drive morphogenesis and contributing to the final shape of tissues and organs. The interaction between muscles and tendons during the establishment of the muscle-skeletal system is a great model to study this problem. During Drosophila melanogaster metamorphosis a group of cells of the dorsal thorax (notum) epithelium, specialized as tendon cells, attach to the developing Indirect Flight Muscles (IFMs). Likewise, epithelial cells anchor to the cuticle exoskeleton through apical projections. Both interactions enable the adaptation of notum epithelium to mechanical strain generated by muscle contraction, by modulating its mechanoresponse. However, scarce evidence exists about how muscle-tendon interaction contributes to the final shape of the notum. Thus, we hypothesized that the interaction between IFMs and tendon cells plays a role in notum epithelium morphogenesis. Geometric morphometric analysis of adult thorax shape shows that interfering with muscle development results in dorsal thorax deformation, however, the absence of muscles does not affect,collective-epithelial movement of the epithelium towards anterior during notum morphogenesis, suggesting that early cellular mechanisms such as cell division, rearrangements and cell delamination are not altered. Conversely, force distribution along epithelium plane changes in muscle depletion condition during notum morphogenesis, displaying anisotropic tendency in tendon-cell and midline domains. Further, impairing muscle-contraction does not affect adult thorax shape compared with wild-type conditions, indicating that muscle function as a structural support for thorax epithelium. On the other hand, the ability of notum epithelium to adapt to the mechanical strain during IFMs contraction becomes crucial to maintain the shape and integrity of the tissue. Notum epithelium lacking Chascon, a scaffold/adaptor protein involved in cytoskeleton organization upstream of Jbug/Filamin, displays epithelium deformations and impaired collective-epithelial movement during morphogenesis. Interestingly, IFMs ablation rescues backward epithelial movement associated with chascon knockdown condition, resembling wild-type phenotype, although it affects tissue-movement velocity and the ability of tendon cells to guide collective cell movement. Since notum epithelium anchors apically to the cuticle we tested whether Chascon is required for this interaction. We found that chascon knockdown in tendon cells results in epithelial detachment from the cuticle during muscles shortening stage, supporting the role of Chascon in cell adhesion and collective epithelial-cell movement. Additionally, we observed an increased anisotropy at tendon cell domains in absence of Chascon after muscle shortening, indicating the great unbalance in mechanical homeostasis after muscle pulling under this condition. Since muscle-tendon interaction is required for tendon cell differentiation in embryos we tested whether muscle was required for the expression of chascon and dumpy, a membrane protein responsible for exoskeleton-epithelium attachment, which along with Chascon is enriched in tendon cell domains during terminal differentiation. We found no significant differences in mRNA levels of chascon and dumpy, between animals lacking muscles versus wild type during muscle shortening, suggesting a muscle-independent alternative regulation of chascon and dumpy expression. Our results support the notion that Chascon is required for tension-adaptation response of notum epithelium during muscle-contraction, ensuring collective-epithelial cell movement through regulation of tendon-cell attachment to the cuticle. We suggest that Chascon, along with a multi-protein complex, regulate the mechano-response of tendon-cells during muscle contraction, by enabling collective-epithelial cell movement under mechanical load due to muscle development. Finally, these analyses will contribute to a better understanding of the role of tissue-tissue interaction in tissue morphogenesis and differentiation.

Page generated in 0.0968 seconds