• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 13
  • 9
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efeito da endotelina sobre a expressão gênica das melanopsinas (Opn4x e Opn4m) e do receptor de endotelina, subtipo ETc, em melanóforo de Xenopus laevis / Effect of endothelin on the gene expression of melanopsins (Opn4x and Opn4m) and endothelin receptor subtype ETc in melanophores of Xenopus laevis

Moraes, Maria Nathália de Carvalho Magalhães 17 December 2010 (has links)
Os relógios biológicos são fundamentais para a sincronização do comportamento dos organismos a mudanças no fotoperíodo. Todas as alterações rítmicas são determinantes para a sobrevivência da espécie uma vez que elas prevêem que os ajustes internos coincidam com a fase mais propícia do ciclo ambiental, permitindo aos organismos a capacidade de sincronizar esses eventos internos com os ciclos ambientais. Muitos desses ritmos biológicos são claramente associados ao ciclo claro-escuro, sendo este ciclo de grande importância para as espécies que possuem algum tipo de pigmento fotossensível. Os melanóforos de Xenopus laevis são fotossensíveis, respondendo à luz com dispersão dos grânulos de melanina, devido à presença de duas melanopsinas, Opn4x e Opn4m. As células pigmentares dos vertebrados heterotérmicos respondem com migração pigmentar a uma variedade de agentes, incluindo as endotelinas. Em peixes teleósteos, ETs induzem a agregação pigmentar em melanóforos, enquanto que em anfíbios, ET-3 induz a dispersão de grânulos de pigmentos em melanóforos de Xenopus laevis e de Rana catesbeiana, através da ativação de receptores ETc. Propusemos determinar o padrão temporal de expressão dos genes das melanopsinas e do receptor ETc em melanóforos dérmicos de X. laevis em cultura, bem como os efeitos temporais e dose- dependentes da endotelina sobre essa expressão. Demonstramos, através de ensaios de PCR quantitativo, que o tratamento de 12C:12E , somado a uma troca de meio, assim como o de endotelina-3 10-9 e 10-8M em escuro constante, foi capaz de sincronizar a expressão de Opn4x e Opn4m. Entretanto, o receptor ETc parece não ser sincronizado pelo ciclo claro-escuro, ou pelo tratamento hormonal. Dependendo da dose utilizada e do ZT analisado, ET-3 pode promover um aumento ou inibição da expressão gênica de Opn4x, Opn4m e ETc, indicando uma modulação de forma dose-dependente. Além disso, pode atuar como um agente sincronizador da expressão dos transcritos das melanopsinas. / The biological clocks are critical for synchronizing the behavior of organisms to changes in photoperiod. All rhythmic changes are crucial to the survival of the species since they provide for internal adjustments to coincide with the phase of the cycle most favorable. Many of these biological rhythms are clearly associated with the light-dark cycle, of major importance for species that have some type of photosensitive pigment. Melanophores of Xenopus laevis are photosensitive, responding to light with dispersion of melanin granules, due to the presence of two melanopsins, Opn4x and Opn4m. The pigment cells of ectothermic vertebrates respond with pigment migration to a variety of agents including the endothelins. In teleost fish, ETs induce pigment aggregation in melanophores, whereas in amphibians, ET-3 induces the dispersion of pigment granules in melanophores of Xenopus laevis and Rana catesbeiana, by activation of ETc. We proposed to determine the temporal pattern of gene expression of the ETc receptor and melanopsins in dermal melanophores of X. laevis in culture as well as the effects of endothelin-3 on the temporal expression of the 3 genes. Using quantitative PCR, we demonstrated that 12L: 12D regimen, combined with medium changes, as well as the treatment with 10-9 and 10-8M endothelin-3, was able to synchronize the expression of Opn4x and Opn4m. However, ETc receptor seems not to be synchronized by light-dark cycle, or hormone treatment. Depending on the dose and the ZT, ET-3 may promote an increase or inhibition of gene expression of Opn4x, Opn4m and ETc, indicating a dose-dependent modulatory effect. In addition, endothelin-3 may also act as a synchronizing agent of the melanopsins transcripts.
2

Modulação da expressão dos genes para melanopsina, clock, per1, per2 e bmal1 por melatonina em melanóforos dérmicos do anfíbio Xenopus laevis / Modulation of the expression of melanopsin, clock, per1, per2 e bmal1 , and by melatonin in dermal melanophores of Xenopus laevis

Bluhm, Ana Paula Canel 11 July 2008 (has links)
O ritmo diário de atividade é uma característica de todos os organismos vivos, que tem a capacidade de se orientar no tempo e no espaço, e distinguir entre tempo linear e tempo cíclico. O ciclo claro:escuro é um importante indicador circadiano para todos os organismos. O trabalho do relógio circadiano envolve mecanismos de retroalimentação positiva e negativa dos genes CLOCK e BMAL1 (brain and muscle Arnt-like protein 1) que formam um heterodímero, funcionando como fator de transcrição para a expressão dos genes per (period), cry (cryptochrome) e o receptor órfão REV-ERB. Em geral, o ciclo circadiano tem início nas primeiras horas da manhã com a ativação da transcrição de per e cry por CLOCK/BMAL1. A periodicidade do relógio circadiano resulta da combinação entre retroalimentação transcricional positiva e negativa destes genes. Hoje já se sabe que os vertebrados, além do relógio central (NSQ) possuem vários relógios, distribuídos pelo corpo, os chamados relógios periféricos. A resposta ao estímulo luminoso é resultado da interpretação da informação luminosa por diferentes tipos celulares. A molécula fotorreceptora de melanóforos dérmicos embrionários de X. laevis foi denominada melanopsina (Opn4/Opn4). Neste anfíbio, cones e bastonetes, continuam a exibir ritmo circadiano em cultura durante vários dias, e a sua capacidade de se ajustar pelo estímulo luminoso indica a presença do sistema circadiano. Os objetivos deste projeto foram: verificar qual é o padrão de expressão para Opn4, per1, per2, bmal1 e clock em melanóforos de X. laevis submetidos a diferentes fotofases; verificar se a expressão para Opn4, per1, per2 ,bmal1 e clock nos melanóforos de X. laevis é modulada pela melatonina. Opn4, per1, per2 ,bmal1 e clock Dados obtidos no presente estudo demonstram que nesta linhagem celular estes genes apresentam um padrão de expressão aparentemente rítmico, quando estas células são expostas a um ciclo claro:escuro (14C:10E), que difere do padrão obtido quando mantidas em regime de escuro constante. Em geral, estas células mantidas em escuro constante durante 5 dias tendem a apresentar aumento de expressão de RNAm para estes genes e, quando mantidas em escuro constante também durante 5 dias, mas com adição de melatonina por 1h, 24 h antes de sua extração, estes níveis de RNAm tendem a diminuir. Porém, quando comparamos as três situações, podemos observar que a adição da melatonina restaura, em geral, o padrão de expressão dos genes analisados em 14C:10E. O conjunto de resultados, que obtivemos em melanóforos dérmicos de Xenopus laevis, sugere que esta linhagem celular possue características de relógio periférico. / The daily rhythm of activity is a characteristic of all living organisms, which have the ability of to behave accordingly time and space, and distinguish between linear and cyclic time. The dark:light cycle is an important time cue for all organisms. The work of circadian clock involves mechanisms of positive and negative feedback of CLOCK and BMAL1 which as a heterodimer act as a transcription factor for the expression of per (period), cry (cryptochrome) and the orphan receptor REV-ERB. A typical circadian cycle begins in the first hours of daytime, which the activation of the transcription of per and cry by CLOCK/BMAL1. It is well known that the vertebrates, besides the central clock (SCN), have several other clocks distributed by the body, the so called peripheric clock. The responses to light are the result of the interpretation of light signal by several cell types The photoreceptor molecule in the dermal melanophores of X. laevis was denominated melanopsin (Opn4/Opn4). In this amphibian, rods and cones maintain circadian rhythm during several days in culture, and their ability to synchronize by light suggest the presence of a circadian system. The objectives of this project were: verify the expression pattern for Opn4, per1, per2 ,bmal1 e clock in dermal melanophores of X. laevis, under different photo phases; and verify whether the expression for Opn4, per1, per2, bmal1 and clock were modulated by melatonin. Our data show that these genes have a rhythmic pattern expression, when these cells are under a 14L:10D, which is different from the pattern exhibited in constant dark. In general, these cells in constant dark have a higher mRNA expression, and in the same condition, but with melatonin applied for 1h, 24h before the data collect, these mRNA levels are lower. However, when we compared these three different experimental conditions, we observed that melatonin resets, in overall, the expression pattern of 14L:10D. These data, taken together, suggest that Xenous laevis dermal melanophores have characteristics of a peripheric clock.
3

Expressão gênica de receptor de melatonina (Mel1) e melanopsinas (Opn4x e Opn4m) em melanóforos de Xenopus laevis / Gene Expression of Melatonin Receptor (Mel1c) and Melanopsins (Opn4x and Opn4m) in Melanophores of Xenopus laevis

Santos, Luciane Rogéria dos 14 December 2010 (has links)
Muitos vertebrados ectotérmicos ajustam suas cores corporais para serem confundidos com o ambiente, através da migração de pigmentos no interior de cromatóforos, regulada por sistemas neurais e/ou hormonais. Essas mudanças de coloração auxiliam no mimetismo, termorregulação, comunicação social e expressão de comportamentos como excitação sexual, agressividade e medo. Entretanto, cromatóforos de inúmeras espécies respondem diretamente à luz. Estudos sobre a resposta à luz nos melanóforos de Xenopus laevis levaram à descoberta do fotopigmento melanopsina, uma opsina que está presente na retina de todos os grupos de vertebrados, inclusive no homem. Vários hormônios podem regular o processo de mudança de cor nos vertebrados, dentre eles a melatonina, hormônio secretado pela glândula pineal. Este é o principal órgão responsável pela integração do sistema neuroendócrino dos vertebrados ao meio ambiente, traduzindo direta ou indiretamente a informação do fotoperíodo em sinal hormonal, coordenando assim os ritmos fisiológicos circadianos com o meio ambiente. Os objetivos deste trabalho foram: investigar se a expressão gênica das melanopsinas e do receptor de melatonina em melanóforos de Xenopus laevis apresenta variação temporal sob diferentes condições luminosas; verificar se a expressão gênica das melanopsinas e do receptor de melatonina em melanóforos de Xenopus laevis pode ser modulada por melatonina. Dados do trabalho demonstram que as melanopsinas em melanóforos de Xenopus laevis são sincronizadas aos ciclos de claro-escuro, expressando um robusto ritmo ultradiano com período de 16h para Opn4m e um ritmo circadiano com período de 25h para Opn4x. Curiosamente, essa ritmicidade só foi observada quando os melanóforos foram mantidos em ciclos 12C:12E e foram submetidos à troca de meio durante a fase clara do fotoperíodo. A constância na expressão gênica do receptor de melatonina Mel1, quer sob diferentes regimes de luz, quer sob tratamento por melatonina, sugere que esse gene é extremamente estável, não sofrendo alterações ao ser submetido a estímulos exógenos, podendo ser considerado um gene constitutivo. O tratamento com melatonina por 6h na fase clara do fotoperíodo, além de inibir drasticamente a expressão de Opn4x e Opn4m, aboliu a ritimicidade de ambas as melanopsinas. Nossos resultados indicam que os melanóforos de Xenopus laevis possuem um relógio funcional e podem ser caracterizados como relógios periféricos, porém necessitam do ciclo claro-escuro associado à troca de meio para exibirem sua sincronização. / Many ectothermic vertebrates adjust their body color to mimic the environment, through the pigment migration within chromatophores, regulated by neural and / or hormonal systems. These changes in color help in camouflage, thermoregulation, social communication and behaviors such as sexual arousal, agressiveness and fear. However, chromatophores of several species respond directly to light. Studies about light response in melanophores of Xenopus laevis have led to the discovery of the photopigment melanopsin, an opsin that is present in the retina of all vertebrate groups, including man. Various hormones may regulate the process of color change in vertebrates, among them melatonin, hormone secreted by the pineal gland. This is the main organ responsible for the integration of the neuroendocrine system of vertebrates to the environment, translating directly or indirectly the photoperiod information into hormonal signal, thus coordinating physiological circadian rhythms with the environment. The objectives of this work were: to investigate whether the gene expression of melanopsins and melatonin receptor in melanophores of Xenopus laevis exhibited temporal variation under different light conditions; to verify whether gene expression of melanopsins and melatonin receptor in melanophores of Xenopus laevis could be modulated by melatonin. Our data show that melanopsins in melanophores of Xenopus laevis are synchronized to light-dark cycles, expressing a robust ultradian rhythm with a period of 16h for Opn4m and circadian rhythm with a period of 25h for Opn4x. Interestingly, the rhythm was only observed when the melanophores were maintained in 12L: 12D regime and medium change was performed during the fotophase of photoperiod. The constancy in the expression of melatonin receptor Mel1c, either under different light regimes, or under treatment by melatonin, suggesting that this gene is extremely stable, not being altered by exogenous stimulus, and may be considered a constitutive gene. Treatment with melatonin for 6h during the fotophase of the photoperiod, drastically inhibit the expression of Opn4x and Opn4m, and abolished the rhythm of both melanopsins. Our results indicate that melanophores of Xenopus laevis possess a functional clock and can be characterized as peripheral clocks, but they need the light-dark cycle associated with change of medium to exhibit their synchronization.
4

Fototransdução em células embrionárias ZEM-2S do peixe teleósteo Danio rerio / Phototransduction in embryonic ZEM-2S cells of the teleost fish Danio rerio

Ramos, Bruno Cesar Ribeiro 15 September 2014 (has links)
A melanopsina foi descoberta em 1998 por Ignacio Provencio e colaboradores em melanóforos de Xenopus leavis. Desde sua descoberta, esse fotopigmento surgiu como um possível candidato a intermediar os fenômenos de sincronização nos vertebrados. Nos mamíferos, a melanopsina é encontrada num pequeno subgrupo de células ganglionares da retina, conhecido como células ganglionares retinianas intrinsecamente fotossensíveis (ipRGCs) e o seu papel como fotopigmento responsável pela percepção luminosa, que leva à sincronização das espécies dessa classe aos ciclos de claro e escuro, já foi estabelecido. A melanopsina está presente na retina de todas as classes de vertebrados estudadas até o momento, mas, em contraposição a essa afirmação, a sua estrutura tem maior semelhança com opsina de invertebrados do que com opsina de vertebrados, sugerindo que sua fototransdução ocorra através da via dos fosfoinositídeos. Essa hipótese foi confirmada por diversos trabalhos na literatura e estudos posteriores demonstraram que, em vertebrados não mamíferos, a melanopsina é codificada por dois genes: um ortólogo ao de mamíferos, Opn4m, e um ortólogo ao de X. leavis, Opn4x, levantando diversas questões a respeito da funcionalidade dessa opsina. Nosso grupo vem estudando esse fotopigmento nos tecidos periféricos de vertebrados desde 2001, sendo que foi pioneiro em demonstrar, em melanóforos de Xenopus laevis, que a dispersão dos grânulos de melanina se dá através da fotoativação da melanopsina que desencadeia a cascata de fosfoinositídeos. E estudos mais recentes vêm colocando a melanopsina como um dos possíveis fotopigmentos responsáveis pela sincronização de relógios periféricos em organismos como peixes e anfíbios. Nesse sentido, a linhagem de células ZEM-2S do peixe teleósteo Danio rerio é um ótimo modelo para o estudo das vias de fototransdução em relógios periféricos. Já foi demonstrado que essa linhagem de células é responsiva a estímulos luminosos, exibindo uma proliferação diferencial frente a diferentes regimes de claro e escuro, e ativando a expressão de genes de relógio como clock, per1 e cry1b, que conhecidamente são responsáveis por sincronizar os ritmos biológicos ao fotoperíodo ambiental. Nossos experimentos de imunocitoquímica detectaram a presença das duas proteínas codificadas pelos genes opn4m-1 e opn4m-2 da melanopsina, e mostraram uma significativa diferença na distribuição das proteínas Opn4m-1 e Opn4m-2. Análises de PCR quantitativo mostraram que um pulso de luz azul de 10 min é capaz de alterar a expressão dos genes de relógio per1b, per2, cry1a e cry1b, e que essa alteração ocorre através da via dos fosfoinositídeos em células embrionárias ZEM-2S de Danio rerio. Em adição mostramos que para promover a alteração dos genes de relógio, a via dos fosfoinositídeos interage com outras vias de sinalização como a via do óxido nítrico (NO) e a via das proteína quinases ativadas por mitógenos (MAPKs). Esses dados sugerem que a melanopsina seja um dos principais candidatos a intermediar os processos de sincronização nessas células, pois a somatória dos resultados de detecção da melanopsina, estimulação dentro de seu espectro de absorção e ativação da via dos fosfoinositídeos, a coloca a frente de outras opsinas como vertebrate ancient opsin (Va-opsin) e teleost multiple tissue opsin (Tmt-opsin) e de outros candidatos como Crys fotossensíveis e mecanismos de estresse oxidativo. No curso deste trabalho também conseguimos definir metodologias eficientes de transfecção de RNA de interferência e de DNA plasmidial em células ZEM-2S de D. rerio, que são ferramentas fundamentais nos estudos de expressão gênica nesse modelo / Melanopsin was discovered in 1998 by Ignacio Provencio and colleagues in Xenopus leavis melanophores. Since its discovery, this photopigment has emerged as a possible candidate to mediate synchronization in vertebrates. In mammals the melanopsin is found in a subset of retinal ganglion cells, known as intrinsically photosensitive retinal ganglion cells (ipRGCs) and their role as the photopigment responsible for photoentrainment in mammals has already been established. Melanopsin is present in the retina of all vertebrate classes studied to date, nevertheless, its structure is more similar to invertebrate than to vertebrates opsins, suggesting that their phototransduction pathway occurs through the phosphoinositide pathway. This hypothesis has been confirmed by several studies in the literature. Later studies showed that melanopsin is encoded by two genes in non-mammalian vertebrates, Opn4m orthologous to mammalian and Opn4x orthologous to X. leavis, raising new questions about the functionality of this opsin. Our group has studied this photopigment in vertebrate peripheral tissues since 2001 and, in Xenopus laevis melanophores, we demonstrated that pigment granule dispersion occurs through photoactivation of melanopsin and triggering of phosphoinositide pathway. More recent studies have put melanopsin as a possible photoreceptor responsible for peripheral clocks entrainment in organisms like fish and amphibians. In this context, the ZEM-2S cell line of the teleost fish Danio rerio is a good model to study the mechanism of phototransduction in peripheral clocks. It has been previously demonstrated that this cell line is responsive to light stimuli, exhibiting a differential proliferation when submitted to different light/dark regimes and activating the expression of clock genes such as clock, per1 and cry1b, known to synchronize the biological rhythms to environmental photoperiod. Our immunocytochemistry experiments detected the presence of two proteins encoded by the melanopsin genes opn4m-1 and opn4m-2, and showed a significant difference in the distribution of proteins Opn4m-1 Opn4m-2. Quantitative PCR analyses showed that a 10-min blue light pulse is able to change the expression of the clock genes per1b, per2, cry1b and cry1a, and that this change occurred through the phosphoinositide cascade in embryonic ZEM-2S cells of D. rerio. In addition we showed that, to promote the change in clock gene expression, the phosphoinositide pathway interacts with other signaling pathways such as the nitric oxide (NO) and the mitogen-activated protein kinase (MAPK) pathways. These data suggest that melanopsin is a major candidate to mediate the photoentrainment in these cells, because taken together, the detection of melanopsin, stimulation within its absorption spectrum and activation of the phosphoinositide cascade, puts it ahead of other opsins, as the vertebrate ancient opsin (Va-opsin) and teleost multiple tissue opsin (Tmt-opsin), and other candidates, as photosensitive Crys and mechanisms of oxidative stress. In the course of this work, we could also define efficient methods for transfection of interference RNA and plasmidial DNA in ZEM-2S cells of D. rerio, which are fundamental tools in studies of gene expression in this model
5

Expressão gênica de receptor de melatonina (Mel1) e melanopsinas (Opn4x e Opn4m) em melanóforos de Xenopus laevis / Gene Expression of Melatonin Receptor (Mel1c) and Melanopsins (Opn4x and Opn4m) in Melanophores of Xenopus laevis

Luciane Rogéria dos Santos 14 December 2010 (has links)
Muitos vertebrados ectotérmicos ajustam suas cores corporais para serem confundidos com o ambiente, através da migração de pigmentos no interior de cromatóforos, regulada por sistemas neurais e/ou hormonais. Essas mudanças de coloração auxiliam no mimetismo, termorregulação, comunicação social e expressão de comportamentos como excitação sexual, agressividade e medo. Entretanto, cromatóforos de inúmeras espécies respondem diretamente à luz. Estudos sobre a resposta à luz nos melanóforos de Xenopus laevis levaram à descoberta do fotopigmento melanopsina, uma opsina que está presente na retina de todos os grupos de vertebrados, inclusive no homem. Vários hormônios podem regular o processo de mudança de cor nos vertebrados, dentre eles a melatonina, hormônio secretado pela glândula pineal. Este é o principal órgão responsável pela integração do sistema neuroendócrino dos vertebrados ao meio ambiente, traduzindo direta ou indiretamente a informação do fotoperíodo em sinal hormonal, coordenando assim os ritmos fisiológicos circadianos com o meio ambiente. Os objetivos deste trabalho foram: investigar se a expressão gênica das melanopsinas e do receptor de melatonina em melanóforos de Xenopus laevis apresenta variação temporal sob diferentes condições luminosas; verificar se a expressão gênica das melanopsinas e do receptor de melatonina em melanóforos de Xenopus laevis pode ser modulada por melatonina. Dados do trabalho demonstram que as melanopsinas em melanóforos de Xenopus laevis são sincronizadas aos ciclos de claro-escuro, expressando um robusto ritmo ultradiano com período de 16h para Opn4m e um ritmo circadiano com período de 25h para Opn4x. Curiosamente, essa ritmicidade só foi observada quando os melanóforos foram mantidos em ciclos 12C:12E e foram submetidos à troca de meio durante a fase clara do fotoperíodo. A constância na expressão gênica do receptor de melatonina Mel1, quer sob diferentes regimes de luz, quer sob tratamento por melatonina, sugere que esse gene é extremamente estável, não sofrendo alterações ao ser submetido a estímulos exógenos, podendo ser considerado um gene constitutivo. O tratamento com melatonina por 6h na fase clara do fotoperíodo, além de inibir drasticamente a expressão de Opn4x e Opn4m, aboliu a ritimicidade de ambas as melanopsinas. Nossos resultados indicam que os melanóforos de Xenopus laevis possuem um relógio funcional e podem ser caracterizados como relógios periféricos, porém necessitam do ciclo claro-escuro associado à troca de meio para exibirem sua sincronização. / Many ectothermic vertebrates adjust their body color to mimic the environment, through the pigment migration within chromatophores, regulated by neural and / or hormonal systems. These changes in color help in camouflage, thermoregulation, social communication and behaviors such as sexual arousal, agressiveness and fear. However, chromatophores of several species respond directly to light. Studies about light response in melanophores of Xenopus laevis have led to the discovery of the photopigment melanopsin, an opsin that is present in the retina of all vertebrate groups, including man. Various hormones may regulate the process of color change in vertebrates, among them melatonin, hormone secreted by the pineal gland. This is the main organ responsible for the integration of the neuroendocrine system of vertebrates to the environment, translating directly or indirectly the photoperiod information into hormonal signal, thus coordinating physiological circadian rhythms with the environment. The objectives of this work were: to investigate whether the gene expression of melanopsins and melatonin receptor in melanophores of Xenopus laevis exhibited temporal variation under different light conditions; to verify whether gene expression of melanopsins and melatonin receptor in melanophores of Xenopus laevis could be modulated by melatonin. Our data show that melanopsins in melanophores of Xenopus laevis are synchronized to light-dark cycles, expressing a robust ultradian rhythm with a period of 16h for Opn4m and circadian rhythm with a period of 25h for Opn4x. Interestingly, the rhythm was only observed when the melanophores were maintained in 12L: 12D regime and medium change was performed during the fotophase of photoperiod. The constancy in the expression of melatonin receptor Mel1c, either under different light regimes, or under treatment by melatonin, suggesting that this gene is extremely stable, not being altered by exogenous stimulus, and may be considered a constitutive gene. Treatment with melatonin for 6h during the fotophase of the photoperiod, drastically inhibit the expression of Opn4x and Opn4m, and abolished the rhythm of both melanopsins. Our results indicate that melanophores of Xenopus laevis possess a functional clock and can be characterized as peripheral clocks, but they need the light-dark cycle associated with change of medium to exhibit their synchronization.
6

Fototransdução em células embrionárias ZEM-2S do peixe teleósteo Danio rerio / Phototransduction in embryonic ZEM-2S cells of the teleost fish Danio rerio

Bruno Cesar Ribeiro Ramos 15 September 2014 (has links)
A melanopsina foi descoberta em 1998 por Ignacio Provencio e colaboradores em melanóforos de Xenopus leavis. Desde sua descoberta, esse fotopigmento surgiu como um possível candidato a intermediar os fenômenos de sincronização nos vertebrados. Nos mamíferos, a melanopsina é encontrada num pequeno subgrupo de células ganglionares da retina, conhecido como células ganglionares retinianas intrinsecamente fotossensíveis (ipRGCs) e o seu papel como fotopigmento responsável pela percepção luminosa, que leva à sincronização das espécies dessa classe aos ciclos de claro e escuro, já foi estabelecido. A melanopsina está presente na retina de todas as classes de vertebrados estudadas até o momento, mas, em contraposição a essa afirmação, a sua estrutura tem maior semelhança com opsina de invertebrados do que com opsina de vertebrados, sugerindo que sua fototransdução ocorra através da via dos fosfoinositídeos. Essa hipótese foi confirmada por diversos trabalhos na literatura e estudos posteriores demonstraram que, em vertebrados não mamíferos, a melanopsina é codificada por dois genes: um ortólogo ao de mamíferos, Opn4m, e um ortólogo ao de X. leavis, Opn4x, levantando diversas questões a respeito da funcionalidade dessa opsina. Nosso grupo vem estudando esse fotopigmento nos tecidos periféricos de vertebrados desde 2001, sendo que foi pioneiro em demonstrar, em melanóforos de Xenopus laevis, que a dispersão dos grânulos de melanina se dá através da fotoativação da melanopsina que desencadeia a cascata de fosfoinositídeos. E estudos mais recentes vêm colocando a melanopsina como um dos possíveis fotopigmentos responsáveis pela sincronização de relógios periféricos em organismos como peixes e anfíbios. Nesse sentido, a linhagem de células ZEM-2S do peixe teleósteo Danio rerio é um ótimo modelo para o estudo das vias de fototransdução em relógios periféricos. Já foi demonstrado que essa linhagem de células é responsiva a estímulos luminosos, exibindo uma proliferação diferencial frente a diferentes regimes de claro e escuro, e ativando a expressão de genes de relógio como clock, per1 e cry1b, que conhecidamente são responsáveis por sincronizar os ritmos biológicos ao fotoperíodo ambiental. Nossos experimentos de imunocitoquímica detectaram a presença das duas proteínas codificadas pelos genes opn4m-1 e opn4m-2 da melanopsina, e mostraram uma significativa diferença na distribuição das proteínas Opn4m-1 e Opn4m-2. Análises de PCR quantitativo mostraram que um pulso de luz azul de 10 min é capaz de alterar a expressão dos genes de relógio per1b, per2, cry1a e cry1b, e que essa alteração ocorre através da via dos fosfoinositídeos em células embrionárias ZEM-2S de Danio rerio. Em adição mostramos que para promover a alteração dos genes de relógio, a via dos fosfoinositídeos interage com outras vias de sinalização como a via do óxido nítrico (NO) e a via das proteína quinases ativadas por mitógenos (MAPKs). Esses dados sugerem que a melanopsina seja um dos principais candidatos a intermediar os processos de sincronização nessas células, pois a somatória dos resultados de detecção da melanopsina, estimulação dentro de seu espectro de absorção e ativação da via dos fosfoinositídeos, a coloca a frente de outras opsinas como vertebrate ancient opsin (Va-opsin) e teleost multiple tissue opsin (Tmt-opsin) e de outros candidatos como Crys fotossensíveis e mecanismos de estresse oxidativo. No curso deste trabalho também conseguimos definir metodologias eficientes de transfecção de RNA de interferência e de DNA plasmidial em células ZEM-2S de D. rerio, que são ferramentas fundamentais nos estudos de expressão gênica nesse modelo / Melanopsin was discovered in 1998 by Ignacio Provencio and colleagues in Xenopus leavis melanophores. Since its discovery, this photopigment has emerged as a possible candidate to mediate synchronization in vertebrates. In mammals the melanopsin is found in a subset of retinal ganglion cells, known as intrinsically photosensitive retinal ganglion cells (ipRGCs) and their role as the photopigment responsible for photoentrainment in mammals has already been established. Melanopsin is present in the retina of all vertebrate classes studied to date, nevertheless, its structure is more similar to invertebrate than to vertebrates opsins, suggesting that their phototransduction pathway occurs through the phosphoinositide pathway. This hypothesis has been confirmed by several studies in the literature. Later studies showed that melanopsin is encoded by two genes in non-mammalian vertebrates, Opn4m orthologous to mammalian and Opn4x orthologous to X. leavis, raising new questions about the functionality of this opsin. Our group has studied this photopigment in vertebrate peripheral tissues since 2001 and, in Xenopus laevis melanophores, we demonstrated that pigment granule dispersion occurs through photoactivation of melanopsin and triggering of phosphoinositide pathway. More recent studies have put melanopsin as a possible photoreceptor responsible for peripheral clocks entrainment in organisms like fish and amphibians. In this context, the ZEM-2S cell line of the teleost fish Danio rerio is a good model to study the mechanism of phototransduction in peripheral clocks. It has been previously demonstrated that this cell line is responsive to light stimuli, exhibiting a differential proliferation when submitted to different light/dark regimes and activating the expression of clock genes such as clock, per1 and cry1b, known to synchronize the biological rhythms to environmental photoperiod. Our immunocytochemistry experiments detected the presence of two proteins encoded by the melanopsin genes opn4m-1 and opn4m-2, and showed a significant difference in the distribution of proteins Opn4m-1 Opn4m-2. Quantitative PCR analyses showed that a 10-min blue light pulse is able to change the expression of the clock genes per1b, per2, cry1b and cry1a, and that this change occurred through the phosphoinositide cascade in embryonic ZEM-2S cells of D. rerio. In addition we showed that, to promote the change in clock gene expression, the phosphoinositide pathway interacts with other signaling pathways such as the nitric oxide (NO) and the mitogen-activated protein kinase (MAPK) pathways. These data suggest that melanopsin is a major candidate to mediate the photoentrainment in these cells, because taken together, the detection of melanopsin, stimulation within its absorption spectrum and activation of the phosphoinositide cascade, puts it ahead of other opsins, as the vertebrate ancient opsin (Va-opsin) and teleost multiple tissue opsin (Tmt-opsin), and other candidates, as photosensitive Crys and mechanisms of oxidative stress. In the course of this work, we could also define efficient methods for transfection of interference RNA and plasmidial DNA in ZEM-2S cells of D. rerio, which are fundamental tools in studies of gene expression in this model
7

Efeito da endotelina sobre a expressão gênica das melanopsinas (Opn4x e Opn4m) e do receptor de endotelina, subtipo ETc, em melanóforo de Xenopus laevis / Effect of endothelin on the gene expression of melanopsins (Opn4x and Opn4m) and endothelin receptor subtype ETc in melanophores of Xenopus laevis

Maria Nathália de Carvalho Magalhães Moraes 17 December 2010 (has links)
Os relógios biológicos são fundamentais para a sincronização do comportamento dos organismos a mudanças no fotoperíodo. Todas as alterações rítmicas são determinantes para a sobrevivência da espécie uma vez que elas prevêem que os ajustes internos coincidam com a fase mais propícia do ciclo ambiental, permitindo aos organismos a capacidade de sincronizar esses eventos internos com os ciclos ambientais. Muitos desses ritmos biológicos são claramente associados ao ciclo claro-escuro, sendo este ciclo de grande importância para as espécies que possuem algum tipo de pigmento fotossensível. Os melanóforos de Xenopus laevis são fotossensíveis, respondendo à luz com dispersão dos grânulos de melanina, devido à presença de duas melanopsinas, Opn4x e Opn4m. As células pigmentares dos vertebrados heterotérmicos respondem com migração pigmentar a uma variedade de agentes, incluindo as endotelinas. Em peixes teleósteos, ETs induzem a agregação pigmentar em melanóforos, enquanto que em anfíbios, ET-3 induz a dispersão de grânulos de pigmentos em melanóforos de Xenopus laevis e de Rana catesbeiana, através da ativação de receptores ETc. Propusemos determinar o padrão temporal de expressão dos genes das melanopsinas e do receptor ETc em melanóforos dérmicos de X. laevis em cultura, bem como os efeitos temporais e dose- dependentes da endotelina sobre essa expressão. Demonstramos, através de ensaios de PCR quantitativo, que o tratamento de 12C:12E , somado a uma troca de meio, assim como o de endotelina-3 10-9 e 10-8M em escuro constante, foi capaz de sincronizar a expressão de Opn4x e Opn4m. Entretanto, o receptor ETc parece não ser sincronizado pelo ciclo claro-escuro, ou pelo tratamento hormonal. Dependendo da dose utilizada e do ZT analisado, ET-3 pode promover um aumento ou inibição da expressão gênica de Opn4x, Opn4m e ETc, indicando uma modulação de forma dose-dependente. Além disso, pode atuar como um agente sincronizador da expressão dos transcritos das melanopsinas. / The biological clocks are critical for synchronizing the behavior of organisms to changes in photoperiod. All rhythmic changes are crucial to the survival of the species since they provide for internal adjustments to coincide with the phase of the cycle most favorable. Many of these biological rhythms are clearly associated with the light-dark cycle, of major importance for species that have some type of photosensitive pigment. Melanophores of Xenopus laevis are photosensitive, responding to light with dispersion of melanin granules, due to the presence of two melanopsins, Opn4x and Opn4m. The pigment cells of ectothermic vertebrates respond with pigment migration to a variety of agents including the endothelins. In teleost fish, ETs induce pigment aggregation in melanophores, whereas in amphibians, ET-3 induces the dispersion of pigment granules in melanophores of Xenopus laevis and Rana catesbeiana, by activation of ETc. We proposed to determine the temporal pattern of gene expression of the ETc receptor and melanopsins in dermal melanophores of X. laevis in culture as well as the effects of endothelin-3 on the temporal expression of the 3 genes. Using quantitative PCR, we demonstrated that 12L: 12D regimen, combined with medium changes, as well as the treatment with 10-9 and 10-8M endothelin-3, was able to synchronize the expression of Opn4x and Opn4m. However, ETc receptor seems not to be synchronized by light-dark cycle, or hormone treatment. Depending on the dose and the ZT, ET-3 may promote an increase or inhibition of gene expression of Opn4x, Opn4m and ETc, indicating a dose-dependent modulatory effect. In addition, endothelin-3 may also act as a synchronizing agent of the melanopsins transcripts.
8

Modulação da expressão dos genes para melanopsina, clock, per1, per2 e bmal1 por melatonina em melanóforos dérmicos do anfíbio Xenopus laevis / Modulation of the expression of melanopsin, clock, per1, per2 e bmal1 , and by melatonin in dermal melanophores of Xenopus laevis

Ana Paula Canel Bluhm 11 July 2008 (has links)
O ritmo diário de atividade é uma característica de todos os organismos vivos, que tem a capacidade de se orientar no tempo e no espaço, e distinguir entre tempo linear e tempo cíclico. O ciclo claro:escuro é um importante indicador circadiano para todos os organismos. O trabalho do relógio circadiano envolve mecanismos de retroalimentação positiva e negativa dos genes CLOCK e BMAL1 (brain and muscle Arnt-like protein 1) que formam um heterodímero, funcionando como fator de transcrição para a expressão dos genes per (period), cry (cryptochrome) e o receptor órfão REV-ERB. Em geral, o ciclo circadiano tem início nas primeiras horas da manhã com a ativação da transcrição de per e cry por CLOCK/BMAL1. A periodicidade do relógio circadiano resulta da combinação entre retroalimentação transcricional positiva e negativa destes genes. Hoje já se sabe que os vertebrados, além do relógio central (NSQ) possuem vários relógios, distribuídos pelo corpo, os chamados relógios periféricos. A resposta ao estímulo luminoso é resultado da interpretação da informação luminosa por diferentes tipos celulares. A molécula fotorreceptora de melanóforos dérmicos embrionários de X. laevis foi denominada melanopsina (Opn4/Opn4). Neste anfíbio, cones e bastonetes, continuam a exibir ritmo circadiano em cultura durante vários dias, e a sua capacidade de se ajustar pelo estímulo luminoso indica a presença do sistema circadiano. Os objetivos deste projeto foram: verificar qual é o padrão de expressão para Opn4, per1, per2, bmal1 e clock em melanóforos de X. laevis submetidos a diferentes fotofases; verificar se a expressão para Opn4, per1, per2 ,bmal1 e clock nos melanóforos de X. laevis é modulada pela melatonina. Opn4, per1, per2 ,bmal1 e clock Dados obtidos no presente estudo demonstram que nesta linhagem celular estes genes apresentam um padrão de expressão aparentemente rítmico, quando estas células são expostas a um ciclo claro:escuro (14C:10E), que difere do padrão obtido quando mantidas em regime de escuro constante. Em geral, estas células mantidas em escuro constante durante 5 dias tendem a apresentar aumento de expressão de RNAm para estes genes e, quando mantidas em escuro constante também durante 5 dias, mas com adição de melatonina por 1h, 24 h antes de sua extração, estes níveis de RNAm tendem a diminuir. Porém, quando comparamos as três situações, podemos observar que a adição da melatonina restaura, em geral, o padrão de expressão dos genes analisados em 14C:10E. O conjunto de resultados, que obtivemos em melanóforos dérmicos de Xenopus laevis, sugere que esta linhagem celular possue características de relógio periférico. / The daily rhythm of activity is a characteristic of all living organisms, which have the ability of to behave accordingly time and space, and distinguish between linear and cyclic time. The dark:light cycle is an important time cue for all organisms. The work of circadian clock involves mechanisms of positive and negative feedback of CLOCK and BMAL1 which as a heterodimer act as a transcription factor for the expression of per (period), cry (cryptochrome) and the orphan receptor REV-ERB. A typical circadian cycle begins in the first hours of daytime, which the activation of the transcription of per and cry by CLOCK/BMAL1. It is well known that the vertebrates, besides the central clock (SCN), have several other clocks distributed by the body, the so called peripheric clock. The responses to light are the result of the interpretation of light signal by several cell types The photoreceptor molecule in the dermal melanophores of X. laevis was denominated melanopsin (Opn4/Opn4). In this amphibian, rods and cones maintain circadian rhythm during several days in culture, and their ability to synchronize by light suggest the presence of a circadian system. The objectives of this project were: verify the expression pattern for Opn4, per1, per2 ,bmal1 e clock in dermal melanophores of X. laevis, under different photo phases; and verify whether the expression for Opn4, per1, per2, bmal1 and clock were modulated by melatonin. Our data show that these genes have a rhythmic pattern expression, when these cells are under a 14L:10D, which is different from the pattern exhibited in constant dark. In general, these cells in constant dark have a higher mRNA expression, and in the same condition, but with melatonin applied for 1h, 24h before the data collect, these mRNA levels are lower. However, when we compared these three different experimental conditions, we observed that melatonin resets, in overall, the expression pattern of 14L:10D. These data, taken together, suggest that Xenous laevis dermal melanophores have characteristics of a peripheric clock.
9

Efeito da luz e endotelina no mecanismo molecular do relógio em melanóforos de Xenopus laevis / Effect of light and endothelin on clock molecular mechanisms in Xenopus laevis melanophores

Moraes, Maria Nathália de Carvalho Magalhães 17 December 2014 (has links)
Os ciclos claro-escuro (CE) são considerados importantes pistas para o ajuste de relógios biológicos. Alças de retroalimentação positiva e negativa de transcrição e tradução de genes de relógio são a base molecular subjacente tanto a relógios centrais como periféricos. A opsina não visual, melanopsina (Opn4), expressa na retina de mamíferos, é considerada o fotopigmento circadiano pois é responsável pelo ajuste do relógio biológico endógeno. Este fotopigmento também está presente nos melanóforos de Xenopus laevis, onde ele foi descrito pela primeira vez, mas seu papel nestas células ainda não está completamente esclarecido. Espécies de vertebrados não mamíferos expressam duas ou mais melanopsinas e, no caso de X. laevis, há dois genes, Opn4m and Opn4x. Melanóforos de X. laevis respondem à luz com dispersão dos grânulos de melanina, a resposta máxima sendo atingida no comprimento de onda correspondente àquele de excitação máxima da melanopsina. Entre vários hormônios, endotelinas também dispersam os melanossomos em melanóforos de Xenopus através de via similar àquela evocada pela luz. Tendo esses fatos em mente, decidimos investigar se a luz e a endotelina modulam a expressão de genes de relógio em melanóforos de Xenopus, usando PCR quantitativo para avaliar os níveis relativos de RNAm de Per1, Per2, Clock e Bmal1. Ciclos CE promoveram alterações temporais na expressão de Per1, Per2 e Bmal1. Pulsos de 10 min de luz azul aumentaram a expressão de Per1 e Per2, diminuíram a expressão de Opn4x, mas não tiveram efeito sobre Opn4m. Ainda mais, diferentes localizações foram mostradas para cada melanopsina: imunorreatividade para OPN4x foi vista principalmente na membrana celular, enquanto OPN4m foi imuno-localizada no núcleo. Estes resultados em conjunto apontam para funções diferenciais das duas melanopsinas neste modelo. A translocação de grânulos de melanina foi maior quando um pulso de luz azul foi aplicado na presença de endotelina ET-3. E os níveis de RNAm de Clock exibiram variação temporal em melanóforos submetidos a CE após tratamento com ET-3 10-9M, enquanto a expressão de Per1 não foi afetada pelo tratamento hormonal. Em adição, ensaios farmacológicos indicaram que as respostas de Per1 e Per2 à luz azul são evocadas através da ativação da via de fosfoinositídeos, com crosstalks com GMPc/proteina quinase G (PKG) para ativar os genes de relógio. Estes dados sugerem a participação de melanopsina na foto-ativação de genes de relógio, e apontam para uma participação menor de endotelina como sincronizador desta linhagem celular. Nossos resultados constituem uma importante contribuição ao campo emergente dos relógios periféricos os quais, em espécies de não mamíferos têm sido mais extensivamente estudados em Drosophila melanogaster e Danio rerio. Dentro deste contexto, nós mostramos que os melanóforos de Xenopus laevis representam um modelo ideal para a compreensão da modulação de ritmos circadianos por luz e hormônios / Light-dark cycles (LD) are considered important cues to entrain biological clocks. Positive and negative feedback loops of clock gene transcription and translation are the molecular basis underlying the mechanism of both central and peripheral clocks. The non-visual opsin, melanopsin (Opn4), expressed in the mammalian retina, is considered a circadian photopigment because it is responsible of entraining the endogenous biological clock. This photopigment is also present in the melanophores of Xenopus laevis, where it was first described, but its role in these cells is not fully understood. Non-mammalian vertebrate species express two or more melanopsins, and in X. laevis there are two melanopsin genes, Opn4m and Opn4x. X. laevis melanophores respond to light with melanin granule dispersion, the maximal response being achieved at the wavelength of melanopsin maximal excitation. Among various hormones, endothelins also disperse melanosomes in Xenopus melanophores through a similar pathway as light does. Therefore, we decided to investigate whether light and endothelin modulate clock gene expression in Xenopus melanophores, using quantitative PCR to evaluate the relative mRNA levels of Per1, Per2, Clock and Bmal1. LD cycles elicited temporal changes in the expression of Per1, Per2 and Bmal1. A 10 min pulse of blue light increased the expression of Per1 and Per2, decreased Opn4x expression, but had no effect on Opn4m. In addition, a different localization was shown for each melanopsin: immunoreactivity for OPN4x was mainly seen in the cell membrane, whereas OPN4m was immunolocalized in the nucleus. These results taken together point to a differential role for each melanopsin in this model. Melanosome translocation was greater when a blue light pulse was applied in the presence of endothelin ET-3. And mRNA levels of Clock exhibited temporal variation in melanophores under LD cycles after 10-9 M ET-3 treatment, whereas Per1 expression was not affected by the hormone treatment. In addition, pharmacological assays indicated that Per1 and Per2 responses to blue light are evoked through the activation of the phosphoinositide pathway, which crosstalks with cGMP/protein kinase G (PKG) to activate the clock genes. These data suggest the participation of melanopsin in the photo-activation of clock genes and point to a minor role of endothelin as synchronizer for this cell line. Our results add an important contribution to the emerging field of peripheral clocks, which in non-mammalian species have been mostly studied in Drosophila melanogaster and Danio rerio. Within this context, we show that Xenopus laevis melanophores represent an ideal model to understanding circadian rhythms modulation by light and hormone
10

Efeito da luz e endotelina no mecanismo molecular do relógio em melanóforos de Xenopus laevis / Effect of light and endothelin on clock molecular mechanisms in Xenopus laevis melanophores

Maria Nathália de Carvalho Magalhães Moraes 17 December 2014 (has links)
Os ciclos claro-escuro (CE) são considerados importantes pistas para o ajuste de relógios biológicos. Alças de retroalimentação positiva e negativa de transcrição e tradução de genes de relógio são a base molecular subjacente tanto a relógios centrais como periféricos. A opsina não visual, melanopsina (Opn4), expressa na retina de mamíferos, é considerada o fotopigmento circadiano pois é responsável pelo ajuste do relógio biológico endógeno. Este fotopigmento também está presente nos melanóforos de Xenopus laevis, onde ele foi descrito pela primeira vez, mas seu papel nestas células ainda não está completamente esclarecido. Espécies de vertebrados não mamíferos expressam duas ou mais melanopsinas e, no caso de X. laevis, há dois genes, Opn4m and Opn4x. Melanóforos de X. laevis respondem à luz com dispersão dos grânulos de melanina, a resposta máxima sendo atingida no comprimento de onda correspondente àquele de excitação máxima da melanopsina. Entre vários hormônios, endotelinas também dispersam os melanossomos em melanóforos de Xenopus através de via similar àquela evocada pela luz. Tendo esses fatos em mente, decidimos investigar se a luz e a endotelina modulam a expressão de genes de relógio em melanóforos de Xenopus, usando PCR quantitativo para avaliar os níveis relativos de RNAm de Per1, Per2, Clock e Bmal1. Ciclos CE promoveram alterações temporais na expressão de Per1, Per2 e Bmal1. Pulsos de 10 min de luz azul aumentaram a expressão de Per1 e Per2, diminuíram a expressão de Opn4x, mas não tiveram efeito sobre Opn4m. Ainda mais, diferentes localizações foram mostradas para cada melanopsina: imunorreatividade para OPN4x foi vista principalmente na membrana celular, enquanto OPN4m foi imuno-localizada no núcleo. Estes resultados em conjunto apontam para funções diferenciais das duas melanopsinas neste modelo. A translocação de grânulos de melanina foi maior quando um pulso de luz azul foi aplicado na presença de endotelina ET-3. E os níveis de RNAm de Clock exibiram variação temporal em melanóforos submetidos a CE após tratamento com ET-3 10-9M, enquanto a expressão de Per1 não foi afetada pelo tratamento hormonal. Em adição, ensaios farmacológicos indicaram que as respostas de Per1 e Per2 à luz azul são evocadas através da ativação da via de fosfoinositídeos, com crosstalks com GMPc/proteina quinase G (PKG) para ativar os genes de relógio. Estes dados sugerem a participação de melanopsina na foto-ativação de genes de relógio, e apontam para uma participação menor de endotelina como sincronizador desta linhagem celular. Nossos resultados constituem uma importante contribuição ao campo emergente dos relógios periféricos os quais, em espécies de não mamíferos têm sido mais extensivamente estudados em Drosophila melanogaster e Danio rerio. Dentro deste contexto, nós mostramos que os melanóforos de Xenopus laevis representam um modelo ideal para a compreensão da modulação de ritmos circadianos por luz e hormônios / Light-dark cycles (LD) are considered important cues to entrain biological clocks. Positive and negative feedback loops of clock gene transcription and translation are the molecular basis underlying the mechanism of both central and peripheral clocks. The non-visual opsin, melanopsin (Opn4), expressed in the mammalian retina, is considered a circadian photopigment because it is responsible of entraining the endogenous biological clock. This photopigment is also present in the melanophores of Xenopus laevis, where it was first described, but its role in these cells is not fully understood. Non-mammalian vertebrate species express two or more melanopsins, and in X. laevis there are two melanopsin genes, Opn4m and Opn4x. X. laevis melanophores respond to light with melanin granule dispersion, the maximal response being achieved at the wavelength of melanopsin maximal excitation. Among various hormones, endothelins also disperse melanosomes in Xenopus melanophores through a similar pathway as light does. Therefore, we decided to investigate whether light and endothelin modulate clock gene expression in Xenopus melanophores, using quantitative PCR to evaluate the relative mRNA levels of Per1, Per2, Clock and Bmal1. LD cycles elicited temporal changes in the expression of Per1, Per2 and Bmal1. A 10 min pulse of blue light increased the expression of Per1 and Per2, decreased Opn4x expression, but had no effect on Opn4m. In addition, a different localization was shown for each melanopsin: immunoreactivity for OPN4x was mainly seen in the cell membrane, whereas OPN4m was immunolocalized in the nucleus. These results taken together point to a differential role for each melanopsin in this model. Melanosome translocation was greater when a blue light pulse was applied in the presence of endothelin ET-3. And mRNA levels of Clock exhibited temporal variation in melanophores under LD cycles after 10-9 M ET-3 treatment, whereas Per1 expression was not affected by the hormone treatment. In addition, pharmacological assays indicated that Per1 and Per2 responses to blue light are evoked through the activation of the phosphoinositide pathway, which crosstalks with cGMP/protein kinase G (PKG) to activate the clock genes. These data suggest the participation of melanopsin in the photo-activation of clock genes and point to a minor role of endothelin as synchronizer for this cell line. Our results add an important contribution to the emerging field of peripheral clocks, which in non-mammalian species have been mostly studied in Drosophila melanogaster and Danio rerio. Within this context, we show that Xenopus laevis melanophores represent an ideal model to understanding circadian rhythms modulation by light and hormone

Page generated in 0.067 seconds